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Abstract 
 

In this paper, an optimal control problem described by one-dimensional bio-
heat transfer equation in a single layered (homogeneous) tissue is analytically 
investigated such that a beneficial therapeutic (desired) temperature on some 
specific points along the entire length of the tumour inside the tissue can be 
attained during the specific time by controlling optimally heating power 
induced by microwave applied on the surface of the tissue [13] when the 
surface cooling temperature is taken as constant throughout the fixed operation 
of the process. Here, the methodology adopted is conjugate gradient method 
under calculus of variation. 

Numerical calculation of temperature distribution along the length of the 
tissue on various values of operation of the process are carried out. 
 
Keywords: Optimal control, microwave, cooling temperature, tumour, 
hyperthermia. 

 
 
Nomenclature 
 
c = specific heat of tissue, J/kg oC 
h = heat transfer coefficient between the skin and the ambient air, CWm 02 /−  
k  = thermal conductivity of tissue, CmW 01 /−  
L = length of the tissue m  
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iχ  = Locations of tumor, m  
χ  = temperature, 0C 

aχ  = arterial temperature, 0C 

0χ  = initial temperature, 0C 
u(t) = temperature of the surrounding medium, 0C 

*χ  = desired temperature to be attained, 0C 
T = Total time of the process, s  
t1 = switching time, s 
Q(t) =  Heating power induced by microwave(Wm-3,). 
ρ  = density of tissue, kg m-3 

δ  = dirac-delta function. 
ω  = product of flow and heat capacity of blood, W m-3 / 0C  
Qm = rate of metabolic heat generation, Wm-3 
 
 
Introduction 
After the modern applications of Maximal Principle, one probably can recognize that 
optimal control theory can be treated within the framework of calculus of variation. 
Because the optimal control theory had reached a good degree of stability and 
perfection, it is believed that a thorough and careful presentation of the current status 
of optimal control theory will serve the useful purpose of offering primarily a 
foundation where later researches can be based, particularly in biological systems. 
 An important class of problem with distributed parameters are the problems of 
optimal heating of tissue. Modeling and understanding heat transport and temperature 
variation within biological tissue are key issues in medical thermal therapeutic 
applications, such as hyperthermia cancer treatment. 
 In hyperthermia treatments the goal is to rise the temperature at the location of the 
tissue affected by tumour to it’s therapeutic value while avoiding the damage of the 
healthy tissue which is generally performed with the aid of simulations for the 
purpose of determining the optimum power of heat sources and surface cooling 
temperature as these are accessible direct control input variables [16]. 
 Deng et al [1] investigated analytically the problems in bio-heat transfer equation 
by heat source applied on the skin surface or inserting a heating probe at the tumor 
site with the aid of Green’s function. An analytical investigation was carried out by 
Dhar et al [2] on optimal temperature control in hyperthermia where the control of 
surface cooling was considered. 
 Butkovasky [3] studied the fundamentals of optimal control problems in 
distributed system. With the aid of finite element method Das et al [4] developed an 
analytical investigation on the aspect of computation technique for fast temperature 
optimization in hyperthermia. 
 Kowalski et al [5] conducted a study on cost minimization problem in space by 
feedback control system applying electro-magnetic phased-array. 
 Loulou et al [6] analyzed analytically a thermal dose optimization problem in 
hyperthermia using conjugate gradient method under calculus of variation. The study 
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of Salloum et al [7] developed an optimization algorithm of heat absorption pattern in 
the treatment planning by applying magnetic nanoparticle injections in tumour. 
 In course of investigation on optimization of radio-immunotherapy (RIT) 
interactions with hyperthermia, the combination of local hyperthermia with RIT has 
been discussed in Kinuya et al [8]. Szasz et al [9] proposed a generalization of the 
entire energy balance where the new paradigm could be a theoretical basis of the 
empirical dose-construction for oncological hyperthermia. 
 The presentation of a PDE-constrained optimization algorithm in Schenek et al 
[10] carries considerable importance in hyperthermia cancer treatment planning. The 
article of Rapoport et al [11] described the study of targeted chemotherapeutic 
intervention on solid tumors by means of ultrasound. Wager in [12] investigated a 
computer simulation to calculate transient temperature distributions in realistic cross 
sections of the human body. 
 Kuznetsov in [13] investigated optimal control problem to maximize the 
temperature in the tumor at the end of time of operation of the process due to spatial 
volumetric heat generation by assuming fixed total volumetric heat generation over 
the duration of the process. With the aid of conjugate gradient method, a distributed 
optimal problem of a system described by bio-heat equation in a homogeneous plane 
tissue due to induced microwave was investigated by Dhar et al [14]. Cheng et al [15] 
studied heating systems with large number of physical sources for temperature 
optimization in hyperthermia by finite difference method. The major study in [15] 
was to approximate the heating pattern of a large number of physical 
sources(antennas) with a smaller number of pre-calculated linearly independent 
source configurations, i.e., virtual sources which would provide a sufficiently goal 
optimization solution. The temperature distribution in the three-dimensional tissue 
was investigated by steady state bio-heat equation .  
 Wagtar[16] studied simulation-oriented optimization method to determine the 
input control variables so as to achieve specified temperature of the tumour inside the 
tissue in an optimum manner. An analytical investigation of heat transport in 
biological tissue in hyperthermia was carried out by Mahjoob et.al [17].  
 A typical treatment with local hyperthermia consists of raising the temperature of 
the tumour to about c04340 −  by avoiding rise of the temperature of the healthy 
tissue to c040 [14,15,16, 17]. Therefore, an optimal treatment goal is to be assumed 
so that all tumour temperatures, located at some specific points along the entire length 
of the tumour embedded inside the tissue , should attain a specific therapeutic 
beneficial (desired) temperature c043 [15]. This assumption attempts to uniformize 
the temperature of all tumours, located at specific points along it’s entire length to a 
therapeutic desired temperature c043  [15]. 
 In this paper, an optimal control problem in distributed parameter system 
described by one-dimensional bio-heat equation in a single layered (homogeneous) 
tissue is analytically investigated such that a beneficial therapeutic (desired) 
temperature on some specific points along the entire length of the tumour embedded 
inside the tissue can be attained during specific time by controlling optimally time-
dependent microwave induced heating power )(tQ )( 3−Wm  where surface cooling 
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temperature is taken as constant throughout the fixed operation of the process. 
 In course of analytical investigation of the problem, it is found that the optimal 
control variable )(tQ )( 3−Wm is a singular control and thus )(tQ )( 3−Wm changes it’s 
value at certain specific discrete instances designated as switching time. For the sake 
of simplicity, one switching time 1t (say) is considered and so )(tQ )( 3−Wm assumes 
two extreme values within the intervals ),0( 1t and ),( 1 Tt where T is the total time of 
operation of the process [3,6,14]. 
 The objective of this paper is to obtain the optimal value of the control )(tQ

)( 3−Wm for specified value of 1t by conjugate gradient method under calculus of 
variation [3,14]. 
 With the obtained values of )(tQ )( 3−Wm , numerical temperature distributions of 
the tissue at different times on various values of total time of operation of the process 
are carried out which display the desired temperature of the tumours. 
 
 
Mathematical Analysis  
The one dimensional Pennes bio-heat equation [1,2] can be written as, 

  
( ) ma QtQ

x
k

t
c +++−+

∂
∂

=
∂
∂ )(2

2

χχωχχρ
 
 (1)  

 
Boundary condition 

   
( ){ } 0=−=

∂
∂

xontuh
x

k χχ

  
   Lxona == χχ  (2)  
 
Initial condition 

  Oox χχ =),(    (3)  
 
 We would like to attain the therapeutic beneficial (desired) temperature *χ on q 
number of tumours , located at specific points qxxxx ,........, 21=  along the entire 
length of the tumour inside the tissue, during the specific time by controlling 
optimally microwave induced heating power applied on the surface of the tissue when 
the total time of operation of the process T  is fixed. The objective function 
(functional) can be written as, [15,16] 
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 Which is taken as performance criterion to be minimized.  
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 Here, ),( txχ , T , L  and δ  designate the temperature of the tissue , total time of 
opration of the process, length of the tissue and dirac-delta function respectively.  
 The performance criterion, given by equation (4), signifies the ratio of the sum of 
the square deviations of the desired temperature *χ from the temperature on q-number 
of tumours, located at specific points qxxxx ,......., 21= along it’s entire length inside 
the tissue, to the q number of tumours.  
 Let us write, a function J , given by, [6,14] 
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 Where ),( txψ  is the adjoint function .  
 The first variation of the functional J can be written as Jδ for small change 

),( txδχ of ),( txχ , where ),( txχ receives a small change ),( txδχ due to the change of 
the control variable )(tQ .  
 In order to obtain the optimality condition, i.e., the stationary condition 0=Jδ , 
we have developed the expressions , given by,  
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by using integration by parts with the help of equations (2) and (3). 
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with the help of equations (2) and (3). By assuming Jδ  to vanish for any 
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equal to Zero, a system of adjoint function ),( txψ  is obtained as,  
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and the optimal value of the controls Q(t) and u(t) stand,  
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 Here the conjugate gradient method with the aid of calculus of variation have been 
used [3,6,14]. Considering atxtx χχχ −),(=),(1  and expressing ),(1 txχ  in Finite 
Sine Transform, given by,  
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where np  are positive, real roots of the equation,  
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the equation (1) with the help of equations (1.2), (1.3) and (1.13) stands,  
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 The solution of equation (15) with the help of equation (16) stands,  
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 The corresponding solution of equation (7) with the help of equations (8) and (9) 
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can be written as, with the help of earlier Finite Transform,  
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for mp  are roots of the equation (14). 
 Here, from equations (10)-(11), we note that )(tQ and )(tu  are singular controls.  
 Considering u(t) as constant, the value of optimal control Q(t) can be obtained 
from equation (10) with the help of equations (14-21). 
 It is assumed that the time dependent controllable input Q(t) (Wm-3) is piecewise 
constant function of time that changes value at certain specified discrete instants 
considered as switching times [12,14,16]. 
 For the sake of simplicity we consider only one specified switching time 1tt =  
 Thus according to equation (10) one can write 
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where Q(t) assumes two extreme values in )(0, 1t  and ),( 1tT  which can be obtained 
with the help of equations (14-21) by means of simulation. 
 
 
Numerical Results  
Data used in computation are given as follows [13]  
C = 3770 J kg-1 0 C-1  
ρ  = 998 kgm-3 
K = .5 Wm-1 0 C-1 
H = 6 Wm-2 0C-1 

aχ  = 370C 

*χ  = 430C 

L = .01 m,  
x1 = .006m 
ω  = 3000 Wm-3 0 C-1 
Qm  = 33800 Wm-3  

0χ  = 250C 
T = 600s, 800s, 1000s  
u(t) = 20oC  
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 All the results are obtained by taking five specific points on the tumour of length 
.001m , lies in .005m ≤ ix  ≤ .006, with the help of computer simulation.  
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          Fig 1 : Temperature(0c)  of the tissue along it's length (mm)  for
                     Q(t)=408493 wm-3,  0<=t<=300;   Q(t)=0, 300< =t<=600; 
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      Fig 2 : Temperature(0c)  of the tissue along it's length (mm)  for
                 Q(t)=380121 wm-3,  0<=t<=400;   Q(t)=0, 400< =t<=800; 
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 Fig 1 depicts the temperature distribution along the length of the tissue subject to 
Q(t) = 408493 Wm-3, 0≤t ≤300; Q(t) = 0, 300 ≤ t ≤600 at different times for total time 
of operation T = 600S. It is observed that the tumour temperature along it’s entire 
length within 006.005. − m attains desired temperature c043  at t = 300s (Switching 
time). In Fig 2 it is shown that the temperature of the tumour along it’s length within 

006.005. − m reaches desired temperature c043  at switching time to t = 400s due the 
application of volumetric heat generation rate Q(t) = 380121 Wm-3, 0 ≤ t ≤ 400; Q(t) 
= 0, 400 ≤ t ≤ 800 for the total time of operation of the process T = 800s. Fig 3 
displays the temperature of the tissue along it’s length at different times for total time 
of operation of the process T = 1000s where it is found that the temperature of the 
tumour along it’s entire length within 006.005. − m rises c043  at the switching time t 
= 500s when heat source Q (t) = 358191 Wm-3, 0 ≤ t ≤ 500; Q(t) = 0, 500 ≤ t ≤ 1000 is 
being applied. 
 It has been observed that distributions of temperature of the tissue on the left side 
of the tumour, which lies between .005m to .006 m, are always less than c043  of the 
tumour. Further the temperature on the right side of the tumour decreases steadily to 

c037  (arterial temperature) which can be accounted for as the effect of cutting off the 
volumetric heat generation rate Q(t) (Wm-3) in the second time segment of operation 
of the process. Thus the damage of normal tissue due to overheating is avoided. It is 
further noteworthy to mention that as the total time of operation of the process 
increases from T = 600s to 1000s, the time in the first segment of operation increases 
with corresponding decrease of Q(t) (Wm-3) in this segment. 
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Conclusion 
Numerical results on temperature distribution of the tissue, which displays the rise of 
the temperature of the tumour at different times of operation of the process, may be 
useful for the purpose of realistic computer aided therapy planning in hyperthermia 
treatment. 
 It can further be developed at different points of location of the tumour alongwith 
different length of the tissue concerned which may focus a useful guideline to 
illustrate the versatility of the computer program. 
 Again as surface cooling temperature is one of the direct control input variable, 
this analytical study can be applied taking into consideration the optimum surface 
cooling temperature alongwith optimum spatial heating power induced by microwave. 
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