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Abstract

The dynamics of a predator -prey interaction model is studied here considering
different growth functions of prey and including a discrete time delay to model
the time lags between the capture of the prey and its conversion to viable
biomass. Linear stability analysis reveals that in the absence of delay for the
monotonic growth function of prey, the coexistence equilibrium is a centre,
but if the growth function of prey is logistic, then the coexistence equilibrium
islocally asymptotically stableif d < #K and it does not exist if d > SK . It

is shown that if 7 =7, >0, periodic solution arises in case of the monotonic

growth function of prey as Hopf bifurcation occurs without any condition. In
the case of the logistic growth of prey when - =7, >0 , the periodic solution is

possible through Hopf bifurcation under certain conditions.
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Introduction

In the real world, the biosphere is an important zone for biological activities that are
mainly responsible for the changes in ecology and environment and the growth rate of
different species mainly depend on ecology, carrying capacity of environment etc. As
a consequence growth rate of the prey pieces is an important matter for the predator-
prey interaction model. The co-existence of interacting biological species has been of
great interest in the past few decades and has been studied extensively using
mathematical models by severa researchers [1, 2, 3, 4, 5, 6]. A predator-prey model
without delay was studied by Dubby [6] considering different growth of predator.
Following [6], different growth functions of prey population are considered here. In
many existing predator-prey ODE models [6, 13, 14, 15], the time delay for the
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conversion of biomass from prey to predator population were ignored. The redlity is
that in the predator equation, the delay is often caused by the conversion of consumed
prey biomass in to the predator biomass, may it be in the form of body size growth or
reproduction. Fan and Wolkowicz [8] studied a predator-prey model in the chemostat
with discrete time delay. Following [6, 7, 8, 12], a predator prey model is proposed
including a discrete time delay to model the time lags between the capture of the prey
and its conversion to viable biomass, considering different growth functions of prey.
Moreover, theterm e isincluded in predator equation which accounts for predators
those interact with prey at time t but die before giving reproduction (or growth) =
time units later (i.e. if we assume a constant death rate o for those predators that
survive in gestation period that means the probability of surviving between the time
lags for converting biomass).

In population dynamics, a functional response of the predator to the prey density
refers to the change in the density of prey attached per unit time per predator as the
prey density changes. For simplicity, Holling type | form (i.e
h(x(t)) = 8 x(t) , B >0 ) of functional response is considered for both cases. The
main purpose of this, study is to anayze the dynamics of the predator —prey
interacting population model due to different growth function, including discrete time
delay for the capture of the prey and its conversion to biomass and the terme™" .
Analyses are shown for monotonic growth function of prey in section -1 and logistic
growth function of prey in section -2.

Model formulation
The proposed model is

dﬁit) = g(x(1)) - h(x(t)) y(t)
%; e h(x(t—7)) y(t—7)—d y(t) &

Subject to the following initia conditions:
X6)=4(6)20, 0e[-7,0), 4(0>0
y(0) =¢,(0)20, 0¢€[-7,0), 4,(0)>0 2

Here x(t) denote the density of prey population, y(t) is the density of the
predator population, g(x(t)) denote the growth function of prey population and
h(x(t)) denote the functional response of the predator on prey, and d is the death rate

of the predator population. Assume that the growth rate of predator depends only on
the prey population. Two growth functions for the prey population are,

() gx®)=rxt), r>0
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Xy 150 K>0,

(i) gx(®) = rx(O (1-=~

where K isthe carrying capacity of the environment.

Section-1
Considering the monotonic growth function of prey and Holling type I, functional
response for predator, the Model (1) becomes

dx (t) _
e A RSORFBIORIO
—d)(/jit) =Be” x(t-r7) yt—-7)-dy(t) (L1

Positivity of the solution

It is important to show positivity for the system (1.1) as they represent prey- predator
populations. Biologically, positivity implies that the population survives. For proof
this, following Zhu and Zou [9], we have the following theorem:

Theoreml.1. Let (¢1(¢9),¢2(49))eC([—r,0],9{§) and (x(t),y(t)) be any solution to
system (1.1) with the initia conditions (2). Then we have the following:

x(t) >0,y(t)>0fort>0.

Proof: To prove x(t) >0 fort €[0,), from the first equation in (1.1), it follows that

0 (- py)
=20 =(r - py(t) ot

= X(t) = x(O)epr(r - ,By(t))dtj >0, Vt>0
= Xx(t)>0

Now to prove that y(t) >0 on[0,x), suppose that there exists t >0 such that
y(f) =0, and y(t) >0 fort [0, f). Theny(t) <0, [8]. From the second equation of
(1.2, we have

y(0) = pe " x({ - 7) y(f - 7) - d y(f)
y(©)=pe’ " x(f-7)y(f-7)>0,
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acontradiction, therefore y(t) > 0,Vt [0, ).

Equilibria and Stability Analysis
The Model (1.1) has two equilibrium points: E, =(0,0) isatrivia equilibrium which
de’ rj . .

,— |, 1S a coexistence

BB
equilibrium which is biologically meaning full. We are only interested here in
analyzing the biologically meaningful coexistence equilibrium.
The linearization of (1.1) about an equilibrium (X, y)given by

[ul(t)} {r—ﬂv —ﬁiHul(t)} { 0 0 Mul(t—r)}

] = + s Csee (1.2
U, (t) 0 —d || u,(t) pey peixX||u(t-1)

The associated characteristic equation is given by

det{r—ﬂv—z - BX }:O

ﬁe—é're—ﬂfy —d+ﬁe_§re_ﬂf)_(—i
= (r-By-2)-d+pe’ e X—A)+pXye e’ =0
:>/12_(r _ﬂy_d+ﬂe—é‘re—}tr)—()/ft+ﬂ2>—(ye—ﬁreﬁlr +(r _ﬂy)(_d_i_ﬂeﬂ?ref/ir )—():0

is biologically meaningless andEzz(X*,y*)=(

Now we define
F(A)=2-[r-By-d+Be’ e %)1+ fxye e +(r- py)l-d+ pe e x)=0 (1.3)

St

ES * r
At the equilibrium point E, = (X Y )= [ —j , (1.3) becomes

g B
,de’” I edrgin

g B

F(/i):/lz—(r —,B%—d+,6e‘”e“d%jr}l+ﬂ

r ~ de”
2 _d 0T AT T :0
[r ﬂﬂj( +pe’‘e ; j

—=F(}) =2 +(d-de”")A+rde? =0 (1.4)
If =0, then (1.4) becomes
2 +(d-d)1+rd=0
=2 +rd=0
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= A==iyrd =tif,
Where
B =rd >0

Whent =0, there are no real roots and two purely imaginary roots. Therefore, it is
acentre. Now we can examine whether Hopf bifurcation will occur or not.

Consider,
G(r,A)=2+rd (1.5)
96 _
oA
26
oA
di_ 0G,0G d

24

|imsip, = *2if3 =%2iNrd =0

dar o ea 24

T [T T as T 20rd
A
..Rea‘l:iiﬁ[):O

The transversality condition does not satisfy. Therefore, if 7 =0 Hopf bifurcation
does not hold.

In case of positive delay, i.e. 7> 0 the characteristic equation for the lineralized
equation around the point E, = (x*, y*) is given by

P(2)+Q(1)e " =0 (1.6)
Where
P(1)= A2+ dA
QA)=—-dA+rd
Ifr>0,Let A=i®w, o >0 beapurelyimaginary root of (1.6).
Now substituting 4 =i inEg. (1.6)
Fiw) =(w?+(d-de' )io+rde™ =0

=-0"+i od-iod(coser -isnar)+rd(coser —isner) =0
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:>(— @ —odsinoT+r dCOSa)z')+i(a)d —wdcoswr—rdsingr)=0

Now separating the rea and imaginary parts we obtain the system of
transcendental equations

R() = -0’ -wdsinor +rdcoser =0 (1.7)
Sw) = wd-wdcoswr—rdsinor=0 (1.8)
Squaring and adding (1.7) and (1.8) we get,
w?d? +r%d? = 0" + w*d?
:(0)2+rd) (a)z—rd)=0
But
(a)2+rd)¢0, asr>0,d>0,0>0.
= w°-rd=0
> w=0,=4rd ,as ®>0.
Therefore we have a positive @ =am, >0 such that equation (1.6) has purely
imaginary roots. Eliminating sin(wz) from (1.7) and (1.8) , we get
2 2
T +w°d
CoOS\w7T)=—7F"""5—
swr) o°d +r°d

Then 7, corresponding to @, isgiven by

1 o (r+d)
Ty = — &ACCOST—2——
@, wy +r°)d

Hopf- bifurcation
We will now show that

{d(R—e/I)] >0

dr

Note that al roots of (1.6) depend continuously on 7 (see Busenberg & cooke,
1993), and as 7 increase, a root of (1.6) may enter the right half plane only by
crossing the imaginary axis( see. Beretta & Kuang 2002). Thus as 7 > 0 increases,
roots of (1.6) may cross the imaginary axis only through a pair of non zero purely
imaginary roots. To see if there is any stability switch as 7 crossesz,, we take the
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help of some results by Cooke and Van den Driessche in Theorem 1 of [10]. We first
look for purely imaginary rootsof A =iw,, @,> 0 of (1.6). Equation (1.6) implies

|P(i a)o)| = |Q(i a)ol

and this determines a set of possible values of @,. Our aim is to determine the
direction of motion of A as 7 isvaried. That is, we determine

-1
0= sign{—d(Reﬁ)} = sign[ Re(d—ij
o F P dr

Now, differentiating (1.6) with respect toz , we get
]d/”t

A=iw,

(22 +d)-de? —ze* (rd —dA Alrd —dA)e”

(dﬂj_l (24 +d) d r

> | — = — [

dr Ard—di)e*” Alrd-di) A
(24+d)  d ¢

~A2+da) A(rd-di) 2

Therefore

o - sanl R 24+d d _r
SN A d-dan) 2|

§gird__Z@rd d _rﬂ

—iwyi’w? +diw,) im,(rd—ied) i,

_ggird Aetd __d < H

dol +iw; daf +irde, iw,

=dign Re

(i, +d)(def —iwf) d(de? —irda)o)+i_r
(da,g)z +af d’wf +r°d’e? o,

205 + d’w? d’w?
| Py +ay  dPep +rdie;

_sign 20;+d> 1
d’ef +wy g +r?

=sign
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[ 20? + 200?r? + w2d? + r%d? - 02d? - &
= sign
| (d°&} + wy) (& +17)

[ @y + 2001 % +r?d?
=sign
(d a)0+a)0)(a)0+r )

We have

dr

[d(Reﬂ)} 0

Therefore, the transversality condition holds and hence Hopf-bifurcation occurs at
®=w,rT=1,.508S r increasesi.e.r > r,, aperiodic solution will occur which is the
case of Hopf-bifurcation. Hence if =0, thereisapair of purely imaginary roots and
its represent centre. When rincreasesto r, i.e. 7<(0,z,), there is another pair of
purely imaginary roots.

Section-2
Now we consider the logistic growth function of the Prey and Holling type | ,
functional response for predator on prey population. The model (1) becomes

SO xn(1- X2 5 x v
o)
y() —pe’ x(t—1) Yt —1)—d y(t) 2

Positivity of solutions
Positivity of the system (2.1) can be easily proved as like as we proved for system
(1.2).

Equilibria and Stability Analysis
The Model (2.1) has two equilibrium points: E, = (0,0) isatrivial equilibrium which

X3
is biologicaly meaningless andEZ:(d; ,;(1—%6”]} is a coexistence

equilibrium which would be biologically meaningful iff %(1—;—Ke“j>o ie

< %In(ﬁTKj For existence, this equilibrium point we need to be assumed —— A g
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. We are only interested here in analyzing the biologically meaningful coexistence
equilibrium.

The linearization of (2.1) about an equilibrium (X, y)given by

Fl(ﬂ}: "-29-5y - pX F(t)H o o ‘M?(t_ﬂ 02
U,(t) 0 —d U, (t) pety pe x| u,(t—r7)

The associated characteristic equation is given by

det[r(l—%)—ﬁv—ﬂ _px }_0
A

ﬂefﬁrefﬂry _d+ﬁef5ref/lrx_

= (r —%—ﬂy—ﬂ,j(— d+pe’e’r X—/?,)+ BPXye e’ =0
=i —(r —2% -py-d +ﬂe‘”e’”>‘<j/1+ [rye’e’” +(r _2;I><<r - ﬂyj(—d +pe’e’” 7():0

Now we define

F(1) = 22 —(r —%—ﬂy—d +,Be“”e‘“>‘<j/‘t+ﬂzi yerretr +(r —%—MJ 23)

(~d+pe’ e’ x)=0

X3
At the equilibrium point E, = (x*, y*)= (d © L(1—ie‘”D , (2.3) becomes

p B BK
F()=£ {r _d e" —par[l—d e”j—dwe”’eﬂf désrj 1+ de” r [1_de?fjeﬂ"fe”
KA A K Jij B B BK
2d o r(, d de”
Hr——€& -p-|1—€" || -d+pe’e""—- |=0
(Kﬂ 75 ﬁKj]( ! ﬂj
:>/12—(—d+de“—rde"‘fj/ﬂrde“—r(]lze‘”e“+rd2e‘”—rdze‘”e“=0
K B BK BK BK
F(ﬂ)zﬂz—Ede“—d—rde""j/%rrdz eﬁf{rd—zrdzeﬁfJe“ =0 (2.4)
K B BK BK

If =0, then (2.4) becomes

f—[—rsz+rd2+@d—2”fj=o
K| " BK BK
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2
:>/12+ﬂ/1+rd—rd =0
BK K
L_oird 1frd ) rd?
2 8K 2\l K BK
We consider

4 --1rd —1\/[rdj —4rd(1—ij and
25K 2\ gK BK

2 --1rd +1\/[rdJ —4rd£1—iJ
25K 2|\ AK BK

Here the real part of A, is negative, therefore the stability depends on another
eigenvalueA, .

Theorem 2.1: Ifr=0, then E, is locally asymptotically stable if d < 4K and E,
doesnot existsif d > K.

In case of positive delay i.e. 7 >0 , the characteristic equation for the lineralized
equation around the point E, is given by

P(A)+Q(A)e* =0 (2.5)
Where

P(A)=2+pl+p,

QM) =l +q,
Here

p1=d+ﬂe‘”>0

Kp
rd® 5,
P, :K_ﬂeb >0
q=-d<0
_ 2rd?

=rd
d; BK
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Ifz>0,Let A=iw, ®>0 beapurelyimaginary root of (2.5).
Now substituting 4 =i® in Eq. (2.5)
2 2
Flio)=(io)—idde —d-T9 e |/ e[ g2 |greior _g
Kp Kp Kp
H 2 2
= - aﬂ(cosa)r—isina)r)+iad+me&+mef”+[rd—2rdje‘”(cosa)r—isina)r)zo
BK Kp Kp
2 2
= (— o’ —odsinor +£e‘” +rdcoswr —ﬂe‘” coswerr
. ord . 2rd® 5, .
i| —wdcoswr +od + —e’ " —rdsinor + ——¢e’ sinwr |[=0
KB KB
Now separating the real and imaginary parts we obtain the system of
transcendental equations
2 2
(rd—z}id eﬁTJCOSa)T—a)dSina)r:a)z—ﬂe‘” (2.6)
2
(rd—2rOI @Tjsina)r+axjcoswr=ad+ax—de& 2.7)
K A

Squaring and adding (2.6) and (2.7) we get,

2 2 2 2 2
2rd e | +w’d?®= a)z—rd et | + a)d+a)—rde5’
LK BK

(rd—
LK

2 2 2,42 244 2
:{rd—2rOl e‘”} +a)2d2:a)4—2w rd” e r2d 2e2°”+a)2(d +ﬂe""j
AK pK B°K Kp
2 2 14 2 2
— ot — 2rd esr_(d_i_&egr)z_i_dz W2 + rzd zezgr_ rd — 2rd e | —o
AK BK LK BK

:>a)4—(mzef”—d2 ad g1 e25’+d2ja;2+
e Kp

K*g* Vg AK
242 243 244
:>a)4+,82K262&w2+—2,;|3 eﬁf—rzdz——;rzszezf”zo

2 44 2.3 244
rdKze%_erZﬂ T A e

pK
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2
w2 = 1r*d? ez&_,_l\/( rd’ eZﬁrj zrzdse&—rzdz—&zd“e&%j

_ZKZlBZ _2 KZﬂZ - ﬂK ﬂsz
Since w* >0

242 242 2 243 244
_21|r<2dﬂ2 6251_"_%\/('22;2 eZ&Tj _ 2;2 eﬁr_r2d2_;r2|32e2§rj>o

2.2 2.2 2 243 2.4
..._;L—%e25r>_%J(L2dﬂze257j _ ZLE eﬁr_erZ_;rzgz e2§rj

2.2 2.2 2 243 244
—( r2d26251)2<( rzdzezgrj _ 2r-d eér_r2d2_3r2dzezarj

K*p KB BK B°K
243 2.4
P d & _r2gr- 9 d e’
ﬂK ﬂZKZ
. 2r2d3e& s 3r2d* 2
ﬂK ,BZKZ

2

:>ﬂ32dKzeZ§T_,6'2?< " +1>0
21 2
:>e25’—2§jKe§’+édK2 >0
2 2

:(e&_?;j +[\/§3§K] >0 (2.8)

This expression (2.8) is dways true as al the parameters here are positive;
therefore we have a positive w=aw, >0 such that equation (2.5) has a purely

imaginary root. We can also find the value of 7, corresponding to @, in a similar
fashion that we have already discussed in section 1.

Hopf- bifurcation
We will now show that

{M} >0

dr

Thiswill signify that there exists at least one eigenvalue with positive real part for



A Predator—Prey Model with Discrete Time Delay 13

7 > 17,. Also, the conditions for Hopf bifurcation [11] are then satisfied yielding the
required periodic solution. To see if there is any stability switch as ¢ crossesz,, we

take the help of some results by Cooke and Van den Driessche in Theorem 1 of [10].
Wefirst look for purely imaginary roots of 4 =iw, of (2.5). Equation (2.5) implies

|P(i a)o)| = |Q(i a)ox

and this determines a set of possible values of @,. Our am is to determine the
direction of motion of A as r isvaried. That is, we determine

-1
0= sign[d(Re;t)} = sign{Re(d—ij
o F N P dr

Now, differentiating (2.5) with respect toz , we get

A=iw,

(22+p)+e*q-re” (ouﬁ+q2)]3— =g +a,)e”

[di jl 22+ p,) qe r

d —A7 + P

de)  Alga+g)e”  Alga+agle” 2
@2+p) , @ oz

T AP +pa+p) Har+a) 2

Therefore

_ 24+ p, % TJ
®=39gn R + 2
g{ {—z(zz+pli+pz) Aad+a,) 4 Lwo

. 2o, + p (o} T
San e(—ia)o(iza)g + plao, + p2)+ ia)o(oaia)o+q2) ia)oﬂ

| 2wy +p, (o} T
=sgn R R + _ —- ]
L e( g + '(6003 - pza’o) — Qg +itw, i, }
_sgn R (2iw, + p,) (p1 ia)03+ip2a)o) ql( qla)O qzia)o)+i_f
(pla)o )2 +( pza)o)z Qg + Gy Wy

— sign Zwo(a)g_ pza)o)+ plag _ G,
i play + (a)g - pza)o)2 Gy + Ohg
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O + 2010 — 2p,0Ra? + PRGEar — o;psws}
2
(P2t + (0 = Py, | ) (Bt + )

=sign

O3 + 200 (0 — p,) + P (PP —qu@}
2
(P2t + (0 = Py, | ) (Bt + )

Therefore, the transversality condition will hold and hence Hopf-bifurcation will
occur at @ = w,,7=1,. 1.6

Rel
[%} >0, if and only if
T =0, =T

2
f - p,>0= @2 > ;dK & (2.9)

and
pra; - p; >0

2 2 2 2 2
= ieﬁf rd—2rd —d? rd e | >0
BK BK BK
2[ 23\2
= ﬁeﬁf rd—2rOI —-d*|>0
LK LK

= rz(l—ﬂj > d? (2.10)
BK

Result and discussion

It is broadly well known that past history as well as current conditions can influence
population dynamics and such interactions has motivated the introduction of time
delays in population growth models. In most of the natural systems, population of one
species does not respond instantaneously to changes in the environment or the
interactions with other species of populations within the community. It is believed
that the time delays have a destabilizing effect in the models of population dynamics
and often time delays are responsible for the population oscillations in constant
environment. Discrete time delay has ability to alter the dynamical behavior of a
model system significantly. In this paper, a mathematical model has been proposed
and analyzed to study the dynamics of a predator-prey system due to the time lags for
the conversion of biomass and considering different growth functions of prey. The
model has been analyzed in two cases: first when growth function of prey population
is monotonic and second when growth function of prey population is logistic. In this
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paper, we have also made an attempt to understand the effect of gestation delay on
dynamical behavior of a prey—predator system. Gestation delay is the time interval
between the moments when an individua prey is killed and when the corresponding
biomass is added to the predator population. As the growth rate of predator species
solely depends upon the amount of biomass added (in predator’s population density)
due to the prey killing, the presence of gestation delay in predator’s growth affect the
abundance of predators, as there are some possibilities of predator’s death during this
gestation period before going to reproduction or growth. Linear stability analysis
reveals the fact that for the monotonic growth rate of prey, in the absence of delay the
coexistence equilibrium is a centre. But for the logistic growth function of prey, it is
locally asymptoticaly stableif d < fK and it does not exist if d > fK . Biologically

it implies that for maintaining coexistence between the predator- prey interacting
populations, balance growth rate of prey and the carrying capacity of an environment
is a crucial matter. Oscillation in population density is quite natural and commonly
observed in most of the prey—predator based ecosystems. We observed that for the
monotonic growth rate of prey, in absence of delay, Hopf bifurcation is not possible
but in case of positive delay Hopf bifurcation is possible without any condition and
there is a periodic solution which is the case of Hopf bifurcation. Biologically it
implies that gestation delay is crucial for a predator-prey interacting system. In case of
the logistic growth of prey, Hopf bifurcation is possible under the conditions

2 2
wf > 4% o andr?{1-24 ] S g2,
BK BK
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