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Abstract 
 

Passage of impulses from the receptors of external and internal world towards 
peripheral and central nervous system take place in respect of two major 
processes which are electrical and chemical in nature. Electrical process in the 
end part of the axon which called axon terminal leads to the chemical process 
that is responsible for impulsive transmission through synaptic gap or cliff. 
This chemical transmission is a predominant type of communication through 
the nervous system. We present some analytical and numerical solutions of 
Magleby [1] model for the transport of the neurotransmitter ACh (acetyl 
choline) in synaptic cleft in the presence of finite number of receptors and 
transporters with different kinetic properties. 
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Introduction 
Electrical synapse and chemical synapse are two primary ways that cells 
communicate with neighbours. Chemical synapses are typically small and 
inaccessible and are crowded together in very large numbers in the brain. Neurons 
also make synapses with skeletal muscle cells, and these are usually much easier to 
isolate and study. For this reason a great deal of experimental and theoretical work on 
synaptic transmission was performed on neuromuscular junction, where the axon of a 
motor neuron forms a chemical synapse with a skeletal muscle fibre. Synaptic 
transmissions have been thoroughly investigated over a number of years (Eccles [2], 
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Katz [3], Bennett [4], Krnjevic [5], Chalyi [6]) and the roles of various transmitters as 
well as some of the pre and post synaptic events are well established. Magleby [1] 
have studied end-plate currents in glycerol treated frog sartorius nervous muscle 
preparations with the voltage clamp techniques. Leibovic [7] have analysed the 
boundedness and stability of solutions of a system of nonlinear differential equations 
which represent kinetics of neural transmitters which can generally exist in several 
states (stored, released, in combination with receptors, recycling storage). Kouki.et.al 
[8], have studied the effects of memantine, an adamantane derivative, on 
neuromuscular transmission in the frog sartorius muscle preparation by measuring the 
end-plate current (EPC) by the voltage clamp method. Memantine (0.5–50 μM) 
reduced the peak amplitude and shortened the duration of the EPC, and the membrane 
voltage-peak EPC relationship became non-linear. Andrzej [9] have presented a 
methodology of mathematical description of the storage and release of the 
neurotransmitter during the fast synaptic transmission. In this paper we analyse the 
mathematical properties of one of the models of neuronal stimulus.  
 
 
Physiological Description of Model 
Here we give a small introduction for the synthesis, packaging, secretion, and removal 
of neurotransmitters in the synaptic cleft through pictures ( Dale [10]) 

 

 
 
(A)The life cycle of transmitter agents entail (1) neurotransmitter synthesis, (2) 
packaging into vesicles, (3) fusion of vesicles resulting in neurotransmitter release, (4) 
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activation of postsynaptic receptors, and (5)neurotransmitters are then removed from 
the synaptic cleft. In many cases, the neurotransmitter and/or a breakdown product is 
reused for neurotransmitter synthesis. 
(B)Small-molecule neurotransmitters are synthesized at nerve terminals. (1)The 
enzymes necessary for neurotransmitter synthesis are made in the cell body of the 
presynaptic cell and (2) transported down the axon by slow axonal transport. (3) 
Precursors are taken up into the terminals by specific transporters, and 
neurotransmitter synthesis and packaging take place within the nerve endings. 
(4)After vesicle fusion and release the neurotransmitter may be enzymatically 
degraded. (5) The reuptake of the neurotransmitter (or its metabolites) starts another 
cycle of synthesis, packaging, release, and removal.  
(C)Peptide neurotransmitters, as well as the enzymes that modify their precursors, are 
synthesized in the cell body (1) Enzymes and propeptides are packaged into vesicles, 
(2) fast axonal transport of these vesicles to the nerve terminals, (3) the enzymes 
modify the propeptides to produce one or more neurotransmitter peptides, (4) after 
vesicle fusion and exocytose, the peptides diffuse away and are degraded by 
proteolytic enzymes  
 
 
Mathematical Formulation 
Magleby [1] showed that the instantaneous end-plate current voltage relationship is 
linear and thus for a fixed voltage the end-plate current is proportional to the end-plate 
conductance. Hence, it is sufficient to study the end-plate conductance rather than the 
end plate current. Since the end-plate conductance is a function of concentration of 
ACh, we restrict our attention to the kinetics of ACh in the synaptic cleft. We assume 
that ACh reacts with its receptor R, in enzymatic fashion given as 

  

*1 . .
2

k
ACh R ACh R ACh R

k

β
α

+   

 
and that the ACh receptor complex passes current only when it is in the open state 
ACH.R*. 

 Let  [ ] [ ] *, . , .c ACh y ACh R x ACh R⎡ ⎤= = = ⎣ ⎦  

  ,dx
x y

dt
α β= +   (1) 

  ( )1 2( ) ,dy
x k c N x y k y

dt
α β= + − − − +   (2)  

  ( ) ( )1 2 ,e

dc
f t k c k c N x y k y

dt
= − − − − +  (3) 

 
where N (the total concentration of ACh receptor) is assumed to be conserved and 
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ACh decays by a simple first-order process at the rate - ek . The postsynaptic 
conductance is assumed to be proportional to x , and the rate of formation of ACh is 
some given function of ( )f t . To solve the equations in Magleby [1] model we 
consider some simplifying assumptions. First assume that the kinetics of ACh binding 
to its receptor is much faster than the other reactions in the scheme so that y is in 
instantaneous equilibrium with c  . 
 The model equations in the dimensional form can be non-dimensionalized by 

substituting 1

2

, , k cx y
X Y C

N N k
= = =

 
and tτ α=  in terms of which equations (1), (2 

,(3) become  

   dX
X Y

d

β
τ α
= − +  (4) 

  
( )1 1dY

X C X Y Y
d

βε ε ε
τ α

⎛ ⎞= + − − − +⎜ ⎟
⎝ ⎠  (5) 

  
( ) ( )2

2 2

1 1ekdC N N
F C C X Y Y

d k K k K K
ε τ

τ ε
= − − − − +

 (6)
 

 
Where  

  ( ) ( )2

2 1

1 ,
f tk

and K F
k k k

αε τ
α

= = =
 (7) 

 
Case 1: For ε 0=  
Using the quasi –steady approximation that is 0ε =  in equation (5) we get 

  

( )1
.

1
C X

Y
C

−
=

+   (8) 
 
 Eliminate’ Y’ from equation (4) we get 

   ( )1 .
1

dX C
X X

d C

β
τ α
= − + −

+  (9) 
 
 In the limit C (t) is very very small equation (9) becomes 

  
1

dX
X X c e

d
τ

τ
−= − ⇒ =

. (10) 
 
 In original variables we get  

  1
tx N c e α−= . (11)
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 Thus equation (11) explains that the post synaptic conductance decays 
exponentially in the synaptic cleft when c is small. 

 For 0dX

dτ
= , the quasi equilibrium state  

 
Case 2: If ( ) = 0,        F N Kτ = <<  
Equation (6) becomes  

  2

.ekdC
C

d k
ε

τ
= −

 (12) 
 
 Integrating (12) we get  

  
0

2

exp( ).ek
C C

k
τ

ε
= −  

 
 This shows that ACh degrades exponentially in the synaptic cleft at the rate ek−  
so that c quickly approaches zero. 

 For 0dX

dτ
=  the quasi equilibrium state equation (4) gives 

  X Y
β
α

= . (13) 

 
 Using (13) and limits ( )  = 0,  F N Kτ = <<

 
in equation (5) and (6) we get  

  0
1exp( ),Y Y τ
ε

= −  (14) 

  0
2

exp( ).ek
C C

k
τ

ε
= −  (15) 

 
 Using (14) in (13) we get 

 

  0
1exp( )X Y

β τ
α ε

= −  (16) 

 
 Thus we get  

  
( )( )

1
2

2 1

.N k c
x

k k c

β
α α α β

= −
+ +

 (17) 

 
 Here we observe that if c is small, x would be approximately proportional to c. An 
exponential decrease of c caused by the decay term ek− would cause an exponential 
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decrease in the postsynaptic conductance. 
 Thus Keenar [11] tried to solve the system of equations (1), (2), (3) in various 
limiting cases but still the whole system remains unsolved. We are giving here phase-
plane analysis of the complete system in limiting case ( ) 0f t =  and N x y= +  and 
also solving the system by power series. 
 
 
Methodology 
Phase-Plane Analysis 
We observe that the equations (1) and (2) are nonlinear and non autonomous 
simultaneous differential equations. By using f (t) (the rate of formation of ACh) is 
equal to zero and N (the total concentration of ACh) is equal to x plus y, equations 
(1), (2) and (3) and they reduce to a linear autonomous simultaneous equations.  

 Consider ( ) 0f t = , N x y= + and substitute this in equations (1), (2),(3) we get 

  ,dx
x y

dt
α β= − +   (18) 

  ( )2
dy

x k y
dt

α β= − + , (19) 

  2 .e

dc
k c k y

dt
= − +  (20) 

 
 Equations (18) to (20) form linear autonomous system, so we can use phase-plane 
analysis to analyse them. Equation (15) and (16) are coupled and independent of c so 
we apply phase-plane analysis to this system as below.  
 The critical point of the system (18) - (20) is  
  x = 0, y = 0, c = 0.  (21) 
 
 Auxiliary equation of (15) - (16) is 

  ( )2
2 2 0m k m kα β α− + + + = . (22) 

 
 Roots of (19) are  

  1 2 2,m k m α β= = + , (23) 
 
where 1m & 2m are real and distinct. If 2k  and (α β+ ) are of same sign the critical 
point is a nodal point (fig1) and if 2k  and (α β+ ) are of opposite sign it is a saddle 
point (fig.2). 
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Power Series solution 
Now we want to solve equations (18) - (20) with the following initial conditions 
  1, 1, 0x y c= = =  (24) 
 
 Consider the series solutions of (18), (19), and (20) as follows 

 
  0 0 0

, , ,n n n
n n n

n n n

x a t y b t c d t
∞ ∞ ∞

= = =

= = =∑ ∑ ∑
  (25)

 

 
 Substituting (25) in (18)-(20) and equating the coefficients of the same powers we 
get the recurrence relations as below  

 ( ) ( )2 2
1 1 1, ,

1 1 1
n n e n nn n

n n n

a k b k d k ba b
a b d

n n n

α βα β
+ + +

− + − +− +
= = =

+ + +

  (26) 

 
 By (24) we get 

  0 0 01, 1, 0a b d= = =  (27) 

  ( ) ( )1 1 2 1 2, , ,a b k d kα β α β= − + = − + =   (28) 

  
( )2 2

2
2 ,

2
k

a
α β β− − −

=  
( ) ( ) ( )2 2 2

2 2 2
2

2
,

2
k k k

b
α α β β− − + − + +

=   

  
( )2

2 2 2 2
2 ,

2
ek k k k k

d
α β− − −

=   (29) 

 
( )3 2 2 3 2 2

2 2
3

2
6

k k
a

α αβ α β β β β− − − + − +
= , 

 
( ) ( ) ( ) ( ) ( )3 3 2 2 32 2 2 2

2 2 2 2 2 2
3

3 3
6

k k k k k k
b

α αβ αβ α β β β α β α− − + + − − + − + −
= , 
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( )22 2 2 2 3 2

2 2 2 2 2 2 2 2
3

2
,

6
e e e ek k k k k k k k k k k k

d
α α β β β α− − − + + + −

=  (30) 

 
and so on.  
 
 Substituting the values of ia , ib and id  in (25) and rearranging the terms we get 

 ( ) ( ) ( )( ) ( ) 2 2
2 22 32 2

1 ......
2 6

t t k kk
x t e e t tα β αβ β α β ββ− − − + +−

= − − + + ,  (31) 

  ( ) ( ) ( )( ) ( )2
2 2 2 2

2

2
1 .....

2
t t k k k

y t e e k t tβ α α β− − − + + +
== − − − + + ,  (32) 

  ( ) ( )
2

2
2 22

2 2

( ) 1 ......
2

ek tk t e e

e

k k tk kk
c t e e t

k k k

α β− −⎛ ⎞
= − − − − + +⎜ ⎟

⎝ ⎠
  (33) 

 
 We observe that the solutions given by (31) - (33) exactly match with the 
solutions obtained by Keener [12] in limiting cases. 
 
 
Modified power series 
We apply a new approach for power series solution as given by Nuran.at.el [12] to the 
system (18) - (20) with the initial condition (24) as follows. 
 Let us consider the first order approximation 

  11x e t= + , (34) 

  21y e t= + , (35) 

  3c e t= . (36) 
 
 Substituting equations (34)-(36) in (18) – (20) we get  

  ( ) ( )1 1 21 1e e t e tα β= − + + +  ,  (37) 

  ( ) ( )( )2 1 2 21 1e e t k e tα β= + − + + ,  (38) 

  ( ) ( )3 3 2 21ee k e t k e t= − + + .  (39)  
 
 Equations (37)-(39) can be written as 

  ( )1e o tα β= − + + ,  (40) 

  ( )2 2e k o tα β= − − + ,  (41) 

  ( )3 2e k o t= + . (42)  
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 The system (40) – (42) can be expressed as Ae B= where  

  
1

2 2

3 2

1 0 0
0 1 0 , ,
0 0 1

e

A e e B k

e k

α β
α β
− +⎡ ⎤ ⎡ ⎤ ⎡ ⎤

⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = = − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 .  (43)  

 
 Solving equation (43) we get  

  1e α β= − + ,  (44)  

  2e α β= − ,  (45) 

  3 2e k= .  (46)

 
 
 Using (44)-(46) in equation (34)-(36) and including second order approximation 
we get 

  ( ) ( ) ( )2
11x t t e tα β= + − + +  ,  (47) 

  ( ) ( ) ( )2
2 21y t k t e tα β= + − − + + ,  (48) 

  ( ) ( ) ( )2
2 3c t k t e t= + .  (49) 

 
 Substituting (47)-(49) in (18) - (20) and solving we get 

 ( ) ( ) ( ) ( ) ( )2 2 2 3
2 1

11
2

x t t k t e tα β α β β⎡ ⎤= + − + + − − + +⎣ ⎦ ,  

 ( ) ( ) ( ) ( ) ) ( )2 2 2 2 3
2 2 2 2 2

11
2

y t k t k k k t e tα β α β α β β⎡= + − − + − − + − + + +⎣ , 

 ( ) ( ) ( ) ( )) ( ) ( )2 2 3
2 2 2 2 3

1
2 e ec t k t k k k k k t e tα β⎡= + − − + − − +⎣ . 

 
 Proceeding like this we get  

 ( ) ( ) ( )( ) ( ) 2 2
2 22 32 2

1 .....
2 6

t t k kk
x t e e t tα β αβ β α β ββ− − − + +−

= − − + + ,  (50) 

 ( ) ( ) ( )( ) ( )2
2 2 2 2

2

2
1 .....

2
t t k k k

y t e e k t tβ α α β− − − + +
= − − − + + ,  (51) 

 ( ) ( )
2

2
2 22

2 2

( ) 1 ...
2

ek tk t e e

e

k k tk kk
c t e e t

k k k

α β− −⎛ ⎞
= − − − − + +⎜ ⎟

⎝ ⎠
…  (52) 

 
 Thus the first approximations of modified power series method exactly matches 
with the solution obtained using Taylor’s series method and in limiting cases with 
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Keener’s [12]. This method gives us more accurate and exact solution.  
 
 
Discussion 
In this paper Magleby and Stevens’s neurotransmitter model is considered. The 
analysis is done by Phase plane and it has been shown that the observations exactly 
match with the Keener [12]. Power series method supports the same result. That is if c 
is small x would be approximately proportional to c .In this case an exponential 
decrease of c caused by the decay term ek−  would cause an exponential decrease in 
the post synaptic conductance in the synaptic cleft and the decay of end plate current 
is due to conformational changes of the ACh receptor. 
 We have also obtained the solution for the system of equations given by (1)-(3) 
for some limiting cases by power series and modified power series solution. The 
obtained solutions are entirely new and can be used to predict the exact conductance 
of the model. 
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