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Abstract 
 

Maximum probability of existence of cancer in human bodies is normally 
diagnosed very late, so that, it is highly cumbersome for physicians to cure. 
Reliability in predicting cancer at initial stage is always needed, so that curing 
and medical recovery is possible. In this paper, an investigation was made to 
diagnose the presence of primary tumor using MCMC Convergence model. 
The MCMC procedure is used here to carry out the analysis which is most 
efficient on a wide range of complex Bayesian statistical models. The analysis 
was carried out using version 18 of SPSS AMOS software. Totally, 18 
components were considered for the diagnosis from the primary tumor 
samples of 725 patients. Patients having primary tumor were analysed 
considering various factors such as class, age, sex, degree of life, etc. using 
mathematical modeling techniques. The maximum likelihood estimators 
(MLEs) of the parameters were derived and assessed their performance 
through a Monte Carlo simulation study. From the collected information the 
values of convergence for likelihood of each components of primary tumor 
has been identified and the results presented. 
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1. INTRODUCTION 
Recent developments in science and technology in the past few centuries has made it 
necessary to apply mathematical methods to real-life problems arising from different 
fields – be it Science, Finance, Management etc. With the advent of computational 
power of digital computers and computing methods, the use of Mathematics in 
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solving real-world problems has become widespread, especially for handling of 
lengthy and complicated problems.  
 The process of translation of a real-life problem into a mathematical form can give 
a better representation and solution of certain critical problems. Markov chain Monte 
Carlo (MCMC) methods are a class of algorithms used for sampling from probability 
distributions based on constructing a Markov chain as its equilibrium distribution. 
After a large number of steps / iteration, it is used as a sample of the desired 
distribution. Based on the number of steps, the quality of the sample improves. The 
number of steps required is determined based on the convergence to the stationary 
distribution within an acceptable error.  
 
 
2. LITERATURE REVIEW 
Studies on statistical modelling have been reported by various researchers such as 
models through Air pollution data, [Cowles et al (2002)] A single MCMC chain, 
[Sylwestrowicz (1982)], [Adams et al (1996)], [Rossini et al (2003)], [Rosenthal 
(2000)], [Wilkinson (2005)] Spatial statistical modeling [Whiley and Wilson (2004)], 
[Blackford et al, (1997)], [Neal (2003)] and Bayesian Spatiotemporal Geo-statistical 
Model. Research works of Bayesian Analysis of Stochastic Models were carried out 
in Single Molecule Biophysics. Recent technological advances have allowed scientists 
to follow a biochemical process on a single molecule basis, unlike traditional 
macroscopic experiments. These raised many challenging data-analysis problems and 
called for a sophisticated statistical modeling and inference effort.  
 In this paper, an investigation was made to diagnose the patients of primary tumor 
cancer using MCMC Convergence model. 18 components were considered for the 
diagnosis from the primary tumor samples of 725 patients. Patients having primary 
tumor cancer were analysed considering various components such as class, age, sex, 
degree of life, etc. using mathematical modeling techniques. The maximum likelihood 
estimators (MLEs) of the parameters were derived and assessed their performance 
through a Monte Carlo simulation study. The Bayesian statistical model of MCMC 
procedure is used in this analysis, which enables us to carry out analysis on a wide 
range of complex data. The analysis was carried out using version 18 of SPSS AMOS 
software. 
 
 
3. DATA PROCESSING AND ANALYSIS 
Amos provides several diagnostics that help anyone check convergence. The patients 
having primary tumor components were taken into account. Class: lung, head and 
neck, esophagus, thyroid, stomach, duodenum and 5m. int, colon, rectum, anus, 
salivary glands, pancreas, gallbladder, liver, kidney, bladder, testis, prostate, ovary, 
corpus, uteri, cervix uteri, vagina and breast. Age: <20, 20-59, greater than or equal to 
60. Sex: Male, Female. Histologic-type (epiddermoid, adeno, anaplastic). Degree of 
life (well, fair, poor), bone (yes, no), bone-marrow (yes, no), lung (yes, no), pleura 
(yes, no), peritoneum (yes, no). liver (yes, no). brain (yes, no). skin (yes, no). neck 
(yes, no). supraclavicular (yes, no), axillar (yes, no), mediastinum (yes, no), 
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abdominal (yes, no). All types of the patients in all types of primary tumor were 
strongly diagnosed through the model.  
 Bayesian analysis requires estimation of explicit means and intercepts. Before 
performing any Bayesian analysis in Amos, we have to first tell Amos to estimate 
means and intercepts. Amos displays Estimates, Scalar Estimates, Maximum 
Likelihood Estimates, and Regression Weights. F1-F2 diagram is then obtained after 
analyzing the tables in Amos and given in Fig. 1. In F1-F2 diagram, F2 contains class, 
age, sex and type while F1 includes all other components for analyzing primary tumor 
cancer. Regression weights, Intercepts, Co-variances and Variance are predicted by 
AMOS software and the results are presented in Table 1. 

 

 
 

Fig. 1: F1-F2 Diagram 
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Table 1: Results on Convergence Analysis (C.S.) 
 

 Mean S.E. S.D. C.S. Median95% Lower bound95% Upper boundSkewness Kurtosis Min Max 
Regression weights 

Bone<--F1 -0.15 0.003 0.092 1.001 -0.147 -0.338 0.026 -0.172 0.297 -0.577 0.231 
Bonemarrow<--F1 -0.053 0.001 0.03 1 -0.051 -0.117 0.002 -0.3 0.553 -0.196 0.065 

Lung<--F1 -0.305 0.009 0.109 1.003 -0.295 -0.548 -0.118 -0.521 0.503 -0.799 0.055 
Pleura<--F1 -0.166 0.007 0.1 1.002 -0.16 -0.379 0.015 -0.287 0.194 -0.607 0.2 

Peritoneum<--F1 0.244 0.004 0.102 1.001 0.238 0.056 0.467 0.391 0.737 -0.142 0.718 
Liver<--F1 -0.217 0.005 0.108 1.001 -0.21 -0.451 -0.026 -0.42 0.468 -0.702 0.194 
Brain<--F1 -0.219 0.004 0.062 1.002 -0.213 -0.359 -0.115 -0.568 0.432 -0.531 -0.038 
Skin<--F1 0.02 0.002 0.05 1.001 0.018 -0.073 0.124 0.326 0.778 -0.158 0.328 
Neck<--F1 0.042 0.002 0.073 1 0.041 -0.103 0.186 0.025 0.285 -0.298 0.4 

Supraclavicular <--F1 -0.187 0.007 0.089 1.003 -0.179 -0.387 -0.032 -0.503 0.629 -0.592 0.174 
Axillar<--F1 -0.023 0.004 0.063 1.002 -0.021 -0.155 0.098 -0.128 0.321 -0.312 0.301 

Mediastinum<--F1 -1.152 0.042 0.346 1.007 -1.096 -1.946 -0.626 -0.686 0.081 -2.36 -0.362 
Abdominal<--F1 -0.273 0.011 0.137 1.003 -0.262 -0.576 -0.032 -0.54 0.914 -0.879 0.311 

Age<--F2 0.004 0.001 0.009 1.005 0.002 -0.01 0.029 1.08 1.843 -0.024 0.052 
Sex<--F2 0.045 0.003 0.021 1.012 0.039 0.023 0.102 1.514 1.742 0.013 0.119 

Type<--F2 0.012 0.001 0.01 1.008 0.01 -0.002 0.037 1.309 2.557 -0.021 0.061 
Intercepts 

Difference 2.015 0.001 0.045 1 2.015 1.927 2.102 0.007 -0.067 1.822 2.215 
Bone 1.723 0 0.025 1 1.723 1.674 1.77 -0.033 0.033 1.616 1.837 

Bonemarrow 1.979 0 0.008 1 1.979 1.964 1.994 0.027 -0.002 1.949 2.01 
Lung 1.778 0.001 0.023 1 1.778 1.733 1.822 -0.044 0.009 1.682 1.871 
Pleura 1.778 0 0.023 1 1.778 1.732 1.822 -0.058 0.012 1.676 1.868 

Peritoneum 1.72 0.001 0.025 1 1.72 1.671 1.768 -0.068 -0.085 1.621 1.807 
Liver 1.679 0 0.026 1 1.679 1.628 1.729 -0.004 0.105 1.574 1.784 
Brain 1.938 0 0.013 1 1.938 1.912 1.964 0.015 -0.065 1.886 1.992 
Skin 1.941 0 0.013 1 1.941 1.915 1.966 -0.036 -0.014 1.889 1.995 
Neck 1.871 0 0.018 1 1.871 1.834 1.907 -0.039 0.032 1.791 1.954 

Supraclavicular 1.821 0 0.021 1 1.821 1.78 1.862 -0.009 -0.027 1.719 1.899 
Axillar 1.902 0 0.016 1 1.902 1.869 1.934 -0.032 0.023 1.84 1.966 

Mediastinum 1.728 0.001 0.024 1 1.729 1.68 1.776 -0.035 0.029 1.613 1.825 
Abdominal 1.661 0.001 0.026 1 1.661 1.611 1.713 0.062 0.046 1.551 1.782 

Class 8.67 0.007 0.389 1 8.675 7.902 9.424 -0.023 -0.005 7.185 10.159
Age 2.248 0.001 0.032 1 2.248 2.186 2.31 -0.015 -0.036 2.12 2.375 
Sex 1.524 0.001 0.028 1 1.525 1.47 1.578 -0.018 0.009 1.406 1.639 

Type 1.912 0 0.029 1 1.912 1.856 1.969 -0.004 0.064 1.78 2.035 
Covariances 

F2<->F1 -0.797 0.039 0.362 1.006 -0.765 -1.585 -0.176 -0.522 0.304 -2.576 0.035 
Variances 

F1 0.121 0.005 0.051 1.004 0.114 0.046 0.236 0.773 0.623 0.028 0.405 
F2 32.5921.27510.8111.007 33.222 11.75 51.453 -0.165 -0.697 5.926 64.589
e9 0.568 0.003 0.058 1.002 0.568 0.454 0.682 0.002 0.002 0.332 0.796 
e10 0.201 0 0.016 1 0.2 0.173 0.235 0.305 0.229 0.146 0.282 
e11 0.02 0 0.002 1 0.02 0.017 0.024 0.289 0.161 0.015 0.028 
e12 0.165 0 0.013 1 0.165 0.141 0.193 0.271 0.037 0.116 0.226 
e13 0.172 0 0.014 1 0.171 0.147 0.201 0.269 0.07 0.121 0.235 
e14 0.198 0 0.016 1 0.198 0.169 0.231 0.257 0.12 0.134 0.271 
e15 0.217 0 0.017 1 0.216 0.186 0.253 0.407 0.379 0.161 0.314 
e16 0.054 0 0.004 1 0.054 0.046 0.063 0.309 0.236 0.038 0.075 
e17 0.056 0 0.004 1 0.056 0.048 0.066 0.271 0.08 0.042 0.077 
e18 0.115 0 0.009 1 0.114 0.099 0.132 0.215 0.023 0.082 0.16 
e19 0.147 0 0.012 1 0.146 0.126 0.171 0.34 0.177 0.106 0.202 
e20 0.089 0 0.007 1 0.089 0.077 0.104 0.34 0.192 0.066 0.124 
e21 0.064 0.003 0.03 1.004 0.065 0.007 0.121 0.03 -0.423 0 0.186 
e22 0.22 0 0.018 1 0.219 0.188 0.258 0.38 0.319 0.152 0.31 
e23 17.7591.23710.3041.007 16.942 1.234 39.365 0.376 -0.549 0 49.859
e24 0.327 0 0.026 1 0.325 0.281 0.38 0.353 0.369 0.239 0.48 
e25 0.197 0.004 0.03 1.008 0.201 0.121 0.244 -0.905 1.036 0.073 0.289 
e26 0.283 0.001 0.022 1 0.281 0.242 0.33 0.307 0.09 0.209 0.392 
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4. RESULTS AND DISCUSSIONS 
On the toolbar of the Bayesian SEM window, AMOS presented a convergence value 
(C.S) of 1.0083. This is an overall convergence based on the statistical analysis. Each 
time the screen refreshes, Amos updates the C.S. for each parameter in the summary 
table; the C.S. value on the toolbar is the largest of the individual C.S. values. The 
C.S. compares the variability within parts of the analysis sample to the variability 
across these parts. By this standard, the maximum C.S. of 1.0083 is not small enough, 
then the fitness displays an unhappy face.  
 
 
5. CONCLUSIONS  
From all the collected information and the statistical analysis carried out using 
AMOS, each component of primary tumor has the maximum C.S. which is strictly 
less than 1.0083. Thus, the patients having primary tumor cancer are strongly 
diagnosed through the model. 
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