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Abstract: 
 

Multiscale approaches to modeling biological phenomena are going rapidly. 
We present here, some recent results on the tumor growth in a rigid walled 
cylindrical duct. The model takes tumor cell concentration, dead cells and 
water (lumen). In this work we explore cell carrying capacity of nutrient in 
tumor cell because tumor growth depends on the supply of nutrient. We find 
that the nutrient concentration in the tumor cell in different variations of cell 
carrying capacity of nutrient in the tumor. 
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Introduction: 
In last few years research on tumor growth has made a considerable progress and is 
receiving more and more attention. This study addresses the most common cause of 
cancer death, the breast cancer. The diameter of the duct in a healthy breast is 0.2mm 
and surround by stroma. Tumors induce blood vessel growth (angiogenesis) by 
secreting various growth factors (e.g. Vascular Endothelial Growth Factor or VEGF). 
Growth factors, such as such as BFGF (basic fibroblast growth factor) VEGF can 
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induce capillary growth into the tumor, by supplying required nutrients and allowing 
for tumor expansion. Thus angiogenesis is a necessary and required step for transition 
of a small harmless cluster of cells, to a large tumor. Angiogenesis is also required for 
the spread of a tumor, or metastasis. Evidences now suggest that the blood vessel in a 
given solid tumor may in fact be mosaic vessels, comprised of endothelial cells and 
tumor cells. This mosaicity allows for substantial shedding of tumor cells into the 
vasculature. The subsequent growth of such metastases will also require a supply of 
nutrients and oxygen. 
 Tumor cells in general are well known to have high glycolytic activity. This is of 
course partly, because of tumor cells progress through multiple steps of 
carcinogenesis exposed to insufficient oxygen supply, because of excessive oxygen 
demand and thereby insufficient vascularization. Even after the tumor increases in 
size, the immediate environment of cancer cells often becomes heterogeneous. In 
addition, some regions of large tumors often have microenvironmental niches, 
displaying a significant gradient of critical metabolites including oxygen, glucose, 
other nutrients, and growth factors. Therefore, angiogenesis is regarded as a key step 
in tumor growth, and antiangiogenesis is the most promising cancer therapy, with 

extensive by studied to prevent tumor angiogenesis.  
 Jain (2005) worked on solid tumors reported that it require blood vessels for 
growth, and many new cancer therapies are directly against the tumor vasculature 
(formation of blood vessels). The widely held view is that these antiangiogenic 
therapies should destroy the tumor vasculature, thereby depriving the tumor of oxygen 
and nutrients. Here, his review emerging evidence supporting an alternative 
hypothesis that certain antiangiogenic agents can also transiently normalize the 
abnormal structure and function of tumor vasculature to make it more efficient for 
oxygen and drug delivery. Drugs that induce vascular normalization can relieve 
oxygen and increase the efficacy of conventional therapies if both are carefully 
scheduled. A better understanding of the molecular and cellular underpinnings of 
vascular normalization may ultimately lead to more effective therapies, not only for 

cancer but also for diseases with abnormal vasculature, as well as regenerative 
medicine, in which the goal is to create and maintain a functionally normal 
vasculature.  
 Gastl et.al.(1997) worked on angiogenesis and observed that it is a key step 
towards tumor treatment, invasion and metastasis. Thus, antiangiogenic therapy was 
postulated to be an attractive approach for antitumor treatment. On the basis of recent 
information, some strategies for inhibition of angiogenesis are feasible (1) inhibition 
of release of angiogenic factors from tumor cells and/or neutralization of angiogenic 
molecules that have already been released (2) inhibition of vascular endothelial cell 
proliferation and migration, and (3) inhibition of the synthesis and turnover of vessel 
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basement membrane. In animal models, treatment with angiogenesis inhibitors has 
proven antitumor effects. Early medical researches experience with angiogenic 
inhibitors that indicates optimal antiangiogenic therapy in the future is likely to be 
based on the long-term administration to cancer patients in adjunct to surgery, 
radiotherapy and conventional chemotherapy. The tumors, it seemed, had found a way 
to circumvent even this most ingenious of treatment approaches.  
 Here we are interested to have mathematical study of ductal carcinoma in situ 
(DCIS) of the breast. The duct is made up of a central region of lumen water (extra 
cellular fluid) lined by a thin layer of epithelial cells, a layer of myo-epithelial cells 
and an outer basement membrane (the duct wall) comprising a meshwork of proteins. 
We consider the tumors growth using a nutrient-limited model. The birth and death 
rate of cells is dependent upon the concentration of a nutrient while immune response 
providing suppression. We consider a cylindrically symmetric geometry of the breast 
duct, which is a rigid walled cylinder, and that growth occurs only in the axial 
direction. In this work, we assume that the duct is an in compressible cylindrical 
compliant membrane and tumor growth and resulting membrane deformations are 
axisymmetric. Franks et. al. (2003) worked in this directions considering a model for 
the early growth of ductal carcinoma and observed the tumor’s growth is described 
using a nutrient-limited model in which the birth and death of cells is dependent upon 
the concentration of a nutrient which is supplied by diffusion from the surroundings 
(either outside of the duct or from the fluid within the duct). 
 Angiogenesis performs a critical role in the development of tumor. Solid tumor is 
smaller than 2 cubic millimeters are not vascularized. To spread, they need to be 
supplied by blood vessels that bring oxygen and nutrients and remove metabolic 
wastes. Beyond the critical volume of 2 cubic millimeters, oxygen and nutrients have 
difficulty in diffusing to the cells in the center of the tumor, causing a state of cellular 
hypoxia that marks the onset of tumor angiogenesis. New blood vessel development is 
an important process in tumor progression. It favors the transition from hyperplasia to 
neoplasia i.e. the passage from a state of cellular multiplication to a state of 
uncontrolled proliferation characteristic of tumor cells. Neovascularization also 
influences the dissemination of tumor cells throughout the entire body eventually 
leading to metastasis formation.  
 The main focus of this study is that the tumors need nutrients and oxygen which is 
supplied by blood vessels in order to grow. They also use blood vessels to spread to 
other parts of the body. This process, known as metastasis, is the most lethal stage of 
cancer and the leading cause of cancer-related death. Fighting cancer by starving 
tumors of life-giving blood vessels has generated great interest in recent years. In this 
work result suggests that mechanisms which inhibit angiogenesis will have potential 
as cancer therapeutics. 
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Mathematical Model: 
 

.  
 
 
 This model is based on the research work of Franks et. al. (2003). Since we are 
modeling for a neovascularisation, we consider a term for cell carrying of nutrient in 
tumor cells. The tumor’s growth depends upon a generic nutrient, the cells divining 
and growing at a dependent upon its concentration. The nutrient diffuses through the 
basement membrane from the vessels surrounding the duct. We formulate the growth 
of a tumor in a rigid walled cylindrical duct which is examined in order to model the 
initial stages of a tumor cell expansion in ductal carcinoma in situ of the breast. We 
denote the concentrations of tumor cell, dead cell and water (lumen) by ),( txn , 

),( txm  and ),( txρ  respectively. The internal velocity field is represented by ),( txv , 
which is created by birth and death rate of cells, where )),(),,(( txwtxuv = and the 
pressure by ),( txp  where ),( zrx = , r and z being the distances in the radial and 
axial directions, respectively while t  is the time. The diffusion coefficients of tumor 
cell, dead cell and water (lumen) represent respectively by nD , mD  and ρD . The 
proliferation rate and death rate and death rate of cells represents by λ and δ
respectively. The term k represents the cell carrying capacity, regarded as a variable in 
its own right, proportional to the amount of neovascularization. The tumor is assumed 
so large that neovascularization dominates the availability of nutrients. We write 
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 Let Ac=λ  and )1( cB σδ −= , where A and B are positive constant and 
10 −<≤ Icσ , so that 0>δ  for all c, to account for cell death. 

 The nutrient is very much necessary to growth of solid tumor. The concentration 
of nutrient is denoted by ),( txc , φ  is represents the rate of nutrient consumption 
during proliferation and cD  which is representing diffusion coefficient constant. 
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 We suppose that concentration of each cell is in the form of an incompressible, 
continuous fluid and the tumor consists exclusively of these three constituents, 
therefore we set 
 1=++ ρmn  (5) 
 
 Adding (1)-(3) and using (5) we get the velocity field. Let 

 )1(
k
nnv −=∇ λ  (6) 

 
 Since the system is multi-dimensional, equation (6) is not sufficient to determine 
the velocity field fully because we require a constitute law for material deformation. 
In order to describe the multi-dimensional system within the tumor, we adopt Stokes 
law (with a volumetric source due to proliferation) which shows slow viscous flow 
and relates the stress, experienced by the cells to their of strain and appears more 
appropriate in the this context. When stating the constitutive law for the stress tensors

jiσ , the tumor cell pressure kkp σ
3
1−= , the rate of strain tensor ije  and the viscosity

μ , we have the following relations 

 12 ( )
3ij ij ij ijp eσ δ μ δ= − + − Δ  
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1−= and Δ is the dilation. The rate of strain tensor and dilation defined 
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 The solid tumor contained only tumor cell and dead cell )0,1( ==+ ρmn  and of 
the outside, it has only water )1,0( ==+ ρmn . The viscosity depends solely on the 
type of cells, so as the viscosity )( mn += μμ i.e. )1(μ is the tumor and )0(μ the 
water. In this context the viscosity represents the resistance to motion experienced by 
the cells this being related to the strength of the bonds that hold them together which 
is, in turn, likely to be determined by the degree of differentiation of the tumor cells. 
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 We suppose that there are momentum is with neglecting inertia, we have 

 0=
∂
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 Now substituting of jiσ  into the momentum equation, gives the Stokes equations. 
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 We suppose that the tumor is containing only uninfected tumor cell and infected 
tumor cells, while the water is at the surface of tumor. Here 0=t  to be the time at 
which the nutrient is first administrated, therefore we take the following as initial 
conditions 
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 We also impose the following boundary condition. 

on 0=z  0=
∂
∂

z
n , 0=

∂
∂

z
p , 0=

∂
∂

z
u , 0=v , 0=

∂
∂

z
c ,  

as ∞→z  0=n , 0=u , 0=
∂
∂

z
v , 0=

∂
∂

z
n

Icc = ,  (9) 

on 0=r  0=
∂
∂

r
n , 0=

∂
∂

r
p , 0=u , 0=

∂
∂
r
v , 0=

∂
∂
r
c  

as 1=r  0=
∂
∂

r
n , 0=u , v

r
v ϕμ −=

∂
∂ , Icc =  

 
 Initially, we suppose that tumor is symmetric about 0=z  and 0=r  so that zero 
flux conditions hold and cellular material has zero axial velocity and radial velocity, 
respectively. As ∞→z along the duct, the concentration of tumor cells tends to zero 
and the nutrient concentration takes some constant value Icc = . On the rigid wall, 

1=r  the nutrient concentration is also constant, the radial velocity is zero and the 
axial velocity satisfies a slip condition so that the shear stress is equal to product of 
the coefficient of slip ϕ and tangential velocity. The coefficient of slip provides a 
measure of how much the cells adhere to the wall of the duct, so when 0=ϕ the 
tumor surface is flat and the movement of the cells one-dimensional in z . 
 
Non-dimensionalization of variables:  
Denoting dimensionless variables by carets ( Λ ) and taking the rate of cell 
proliferation to set the timescale, we introduce the following rescaling. 

 t̂t
A
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 In terms of new variables, the system (1)-(6) takes the following dimensionless 
forms: 
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 We have used quasi-steady form in the equation (14) for the nutrient concentration 
as we find dimensionless form that the left hand side of equation (4) is negligible in 
comparison to right hand side. Concerns the research work of Frank et. al. (2003), 
this kind of condition implies that diffusion, rather than convection is the dominant 
mechanism for the redistribution of nutrient within the tumor. The non-dimensional 
parameters are 
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 The boundary conditions for the dimensionless system are given 
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 Generally, the viscosity is variant this model comprises system of five coupled 
equations (11)-(14). However, if we assume that the viscosity has the same value 
inside and outside of the tumor, the pressure, velocity and nutrient concentration can 
be found in terms of the tumor cell concentration only and hence the system simplifies 
significantly.  
 
 
Numerical Results: 
The numerical procedure used to approximate the system partial differential equations 
(11)-(16), being approximated using the MATLAB 6.0, to solve the partial differential 
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equation. All the simulation describes in this section use the same parameters values 
adopted in the simulation described in the section (2.3.2) of Frank et. al. (2003). We 
take the viscosity inside and outside the tumor to be uniform and consider the tumor 
surface flat whereas for larger values of coefficient of the slip 5=ϕ . 
 1=B ,  9.0=σ , 1.0=φ , 1=μ , 5=ϕ , 510−=nD  

 
 Figure represents the evolution of tumor cell concentration with the radial (r =0 to 
1) and the axial (z =0 to 200) directions. We see that in the figure 1 (a) the tumor cell 
concentration is a 1.9 (approx.) when cell carrying capacity of nutrient is less than the 
tumor cell concentration. In the figure 1 (b) the tumor cell concentration is a 2.1 
(approx.) when cell carrying capacity of nutrient is greater than the tumor cell 
concentration. In these figures, we shows that the growth of tumor cell concentration 
is depend on the nutrient because tumor cell proliferation rate and death rate are the 
functions of nutrient. 
 Figure shows the evolution of nutrient concentration in solid tumor with the radial 
(r =0 to 1) and the axial (z =0 to 200) directions. We see that in the figure 2 (a) the 
nutrient concentration is 1 (approx.) initially and it’s going down up to 0.1 (approx.), 
when cell carrying capacity of nutrient is very low in the tumor cell concentration. In 
the figure 2 (b) the nutrient concentrations is a 1 (approx.) initially and it’s going 
down up to 12.5 (approx.), when cell carrying capacity of nutrient is very high in the 
tumor cell concentration. In these figures we show the nutrient concentration is high 
in the tumor cell concentration, when the cell carrying capacity of nutrient is high. 

 

 
 

Fig1. Evolution of the tumor cell concentration (a) when cell carrying capacity of 
nutrient is very low (b) when cell carrying capacity of nutrient is very high 
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Fig2. Evolution of the nutrient concentration (a) when cell carrying capacity of 
nutrient is very low (b) when cell carrying capacity of nutrient is very high 

 
 

Discussion: 
The mathematical modeling of in vitro nutrient testing studies are limited but 
remarkably worthwhile, since results can be derived by a relatively simple extension 
of an existing model. In this work we have accordingly work on an earlier model of 
Franks et. al. (2003) to investigate the effect of a nutrient on the tumor cell 
concentration. In particular we studied the cell carrying capacity of the nutrient in 
solid tumor. Good qualitative agreement with experiments has been obtained in terms 
of the dependence of cell survival on the nutrient in the tumor. The numerical 
simulations mainly involved the study of the cell carrying capacity of nutrient in solid 
tumor. The simulation emphasize that cell-carrying capacity of nutrient is a crucial 
factor in the determining tumor growth effectiveness.  
 In this work, we have introduced cell carrying of nutrient in the tumor cell 
because the solid tumor growth depends on nutrient it work as a fuel for the growth of 
tumor. We have observed for the different values of the cell carrying capacity of 
nutrient in the tumor cell. The figure 2 shows if the cell carrying capacity of nutrient 
is high then nutrient concentration in the tumor cell is high. In the figure 1 we see that 
if nutrient concentration is high in tumor cell then tumor cell concentration is high. 
The numerical simulation mainly involved the study of the nutrient concentration in 
the tumor cell in different variations of cell carrying capacity of nutrient in the tumor. 
This is result is in the support of the work of Jain (2005). If we can apply the anti-
angiogenic therapy of the nutrient vascularization of the solid tumor then growth of 
the solid tumor will remove.  
 Perhaps the most important feature missing in the current model is a mechanism 
for delay in the recovery of hypoxic cells to a proliferating on renewal of an adequate 
nutrient supply. In this model, we are describing the growth of an avascular tumor in 
rigid cylindrical duct. We observed that for tumor cell concentration with the cell 
carrying capacity of nutrient in tumor, suggesting that this may be a mechanism that 
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causes the duct wall to deform. Further considerations, such as the role of blood and 
mathematical models, will also form the focus of future studies. 
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