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Abstract 
 

Let us consider a Stochastic model for the spread of an epidemic among a 
population of n individuals that are equally spaced around a circle. Throughout 
its infectious period, a typical infective, i say, makes global contacts, with 
individuals chosen independently and uniformly from the whole population, 
and local contacts with individuals chosen independently and uniformly 
according to a contact distribution centered on i. The great circle model, in 
which individuals are equally spaced on a circle and local contacts are nearest-
neighbour.  
 
Keywords Epidemic process, local and global mixing, random graph, Poisson 
convergence, Branching process.  

 
 
1. Introduction 
The great circle model is considered and an informal argument given for its threshold 
behaviour. A formal threshold theorem and the mean final size of an epidemic that 
takes off in the limit as the population size n→∞. Suppose that the population 
comprises of n individuals located in one-dimensional space. Label the individuals 
sequentially 1 through n and to avoid boundary problems it is convenient to take the 
space to be the circumference of a circle, that individuals 1 and n are neighbours. 
Assign to each individual independent and identically distributed life histories. ࣢ = 
(Q, ηG, ηL), where Q is the infectious period and ηG and ηL are point processes of 
times, relative to an individual’s infection, at which global and local infectious are 
made. Each global contact is with an individual chosen independently and uniformly 
from the initial n individuals in the population.  
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2. Branching Process 
Let us consider a sequence (En) of such epidemics, indexed by the population size n, 
in which the nth epidemic has initially 1 infective and n-1 susceptibles with the initial 
infective being chosen uniformly from the n individuals in the population.  
 The epidemics and associated global contact processes, (Ci, ξ i) (i=1, 2 ), can be 
used to construct a realization of a general branching process. Let 0 < s2 ≤ s3 ≤. denote 
the times of births in the branching process. Let (D2, J2, ξ2), (D3, J3, ξ3),. denote the 
successive histories of individuals born into the branching process.  
 Thus individuals in the branching process are labeled in the order in which they 
are born, with the label 1 being attached to the initial ancestor. The ith individual in the 
branching process has lifetime Di and reproduces fat the points of ξi. The Ji’s play no 
role in the branching process, but are instrumental in coupling the epidemic process to 
the branching process.  
 
 
3. Great Circle Model 
The great circle consists of alternating runs of susceptible and infected individuals, 
which from an alternating renewal process.  
 In the great circle model, the population is assumed to the equally spaced around a 
circle. During infectious period, a typical infective contacts any given susceptible that 
is located next to it on the circle at rate ߣ௅. It contacts any given susceptible in the 
whole population at rate ீߣ/N. Thus the individual to individual infection rate for 
neighbouring and non-neighbouring individuals are ߣ௅+ீߣ/N and ீߣ/N respectively.  
 Households model, the population partitioned into m households, each of size n, 
so N=mn. The overlapping groups model the population into ݉ఈ households, each of 
size ݊ఈ, and also into ݉ఉ workplaces, each of size ݊ఉ, So N = ݉ఈ݊ఈ = ݉ఉ݊ఉ, for 
each n≥1, the epidemic En is among n individuals located in one-dimensional space. 
Let us Consider the case where each individual has one neighbor one each side, so 
avoid boundary problems, it is convenient to take the space to the circumference of a 
circle.  
 The individuals are numbered sequentially around a circle 1 through n. So that 
individuals 1 and n are neighbours. Each local contact is with an individual chosen 
independently form a distribution  
 {߱௜

௡; i =-ቂ௡ିଵ
ଶ

ቃ, െ ቂ௡ିଵ
ଶ

ቃ ൅ 1.. ቂ௡
ଶ
ቃ}..  (3. 1. 1) 

 
 Where ߱௜

௡ is the probability individual ݇ on making a local infectious contact, so 
with individual (݇+i)mod n. So ݒ௞, (݇+i)mod n = ߱௜

௡.  
 Suppose that lim௡՜ஶ ߱௜

௡ = ߱௜ (i߳Ժ), where {߱௜; i߳Ժ } is a proper distribution with 
߱଴=0 for n=1, 2,., ߱௜

௡ ≥ ߱௜(i=-ቂ௡ିଵ
ଶ

ቃ, -ቂ௡ିଵ
ଶ

ቃ ൅ 1.. ቂ௡
ଶ

ቃ ) with ߱଴
௡ = 0. Therefore, for all 

1 ≤i ≤ n,  
 P( |ݏ௜

௡| =1) =. Πj
[n/2] =-[(n-1)/2] φ ( ௝߱

௡ ௅ߣ 
௡)...  (3. 1. 2) 
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Theorem 3. 1.  
Suppose that there exist α>0, 0 <δ < ½ and b>0 such that ߣ௅

௡n-α →0, nδ P(|ݏ௜
௡| =1)→∞ 

and ீߣ 
௡ E[Q] –log(hnP|ݏ௜

௡| =1) + log b →0 as n →∞. Suppose also that there exist γ≥0 
and ρ > ఋାఈ

ଵାఊ
 + 2δ such that γ > δ+α-1, ∑ |݅|௜אԺ

1+γ ߱௜<∞ and hn n-ρ →∞ as n →∞. Then 

Sn
஽
՜ Po(b) as n →∞.  

 
Proof.  
If P(|ݏ௜

௡| =1) =. ΠL
 [n/2] =-[(n-1)/2]φ (߱௡, ߣ௅ 

௡ ) (1≤ i≤ n). So, g(n) = Pሺ|ݏ௜
௡| =1). Fix ε 

and c such that ఋାఈ
ଵାఊ

 < ఌ
ଵାఊ

 < c < ρ-2δ and, for 1≤ i≤ n.. Let Li
n = {j ߳ Գ: j ≤ n and- ଵ

ଵ଴
 nc 

< (j-1)modn < ଵ
ଵ଴

nc}. Then, for n ≥1, |ܮ௜
௡| ≤ ଵ

ଷ
nc (1 ≤ i ≤ n ).  

 For n≥1, ߱௟
௡≤ ߱௟ (݈ =-ቂ௡ିଵ

ଶ
ቃ, െ ቂ௡ିଵ

ଶ
ቃ ൅ 1.. ቂ௡

ଶ
ቃ). Thus for 1 ≤i ≤ n.  

 ∑ ௜,௝ݒ
௡

௝ב௅೔
೙  = ∑ ߱௟

௡
|௟|≥೙೎

భబ
 = 1-∑ ߱௟

௡
|௟|ழ೙೎

భబ
..  (3. 1. 3) 

 ≤ 1-∑ ߱௟|௟|ழ೙೎
భబ

.  (3. 1. 4) 

 = ∑ ߱௟|௟|≥೙೎
భబ

.  (3. 1. 5) 

 
 Now ∑ ߱௟|௟|≥೙೎

భబ
 < ݊ିఌ for all sufficiently large n, since otherwise 

 ∑ |݅|௜ఢԺ
1+γ ߱௜ ≥ ∑ |݅|

|௜|೙೎
భబ

1+γ ߱௜..  (3. 1. 6) 

 ≥ ଵ
ଵ଴భశγ n

c(1+γ) ∑ ߱௜|௜|≥೙೎
భబ

..  (3. 1. 7) 

 ≥ ଵ
ଵ଴భశγ n

c(1+γ)-ε............................................  (3. 1. 8) 
 
 For arbitrarily large n, which contradicts ∑ |݅|௜ఢԺ

1+γ ߱௜ < ∞. Since c(1+γ)-ε > 0.  
 Thus, ∑ ߭௜,௝

௡
௝ב௅೙

೔  < n-ε for all sufficiently large n.  
 Further, ∑ ௝߭,௜

௡
௝ב௅೙

೔  = ∑ ߭௜,௝
௡

௝ב௅೙
೔  by the symmetry of the great circle model. So, 

∑ ௝߭,௜
௡

௝ב௅೙
೔  < n-ε for all sufficiently large n. Since, c + 2δ < ρ, hnn-(c + 2δ) →∞ as n →∞.  

 
 
4. The model with a general infectious period 
Let the population consist of N individuals subdivided into m groups each of size n. 
The infectious periods of different infectives are independently and identically 
distributed according to a random variable T1. Throughout its infectious period a 
given infective makes contact with each other susceptible in the population at the 
points of a homogeneous Poisson process having rate λG/N and, additionally with 
each susceptible in its own group at the points of a homogeneous Poisson process 
having rate λL. All the Poisson process describing infectious contacts, the random 
variables describing infectious periods, are assumed to be mutually independent. The 
great circle model where the population is not partitioned into groups.  
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5. Markov chain representation of the epidemic 
A change of time scale and let us define a new artificial time t, t =1, 2, as the 
cumulative members of removals in the course of real time. Put Xn(0) =n and for t≥1. 
Let Xn(t) denote the number of individuals that escape infectious contacts with the 
first t infectives removed. For t≥1, let Di be the length of the infectious period of the 
ith infective removed, and denoted by Zn, i (t), 1 ≤i ≤ n.  
 Xn(t) = ∑ ܼ݊௑௡ሺ௧ିଵሻ

௜ୀଵ , i (t), t≥1.  (5. 1. 1) 
 
 Moreover, for t≥1 each vector Zn(t) = {Zn, i (t), 1 ≤i ≤ n} is a family of n 
exchangeable variables having mixed Bernoulli distributions with random parameter 
Qn, t = exp (-βn Dt).  
 Xn(t) = ݀ࣧࣜ(Xn (t-1), Qn, t), t≥1.  (5. 1. 2) 
 
 Where ࣧࣜ denotes the mixed binomial. All the vectors Zn(t) are independent and 
all the Qn, t’s are infected individuals and distributed as the variable Qn = exp(βnD). 
Let In(t) denote the number of infected individuals. We have,  
 T + Xn(t) + In(t) = n + mn, t≥1.  (5. 1. 3) 
 
 Tn as the first time when there are no more infectives.  
 Tn = inf {t: t + Xn(t) = n + mn}.  (5. 1. 4) 
 
 
6. Final outcome of the epidemic process En 
Suppose that the epidemic process En is initiated by exposing the population to ଴ܶ

௡ 
units of global infectious pressure. The local epidemics created by individuals who 
succumb to ଴ܶ

௡ units of global infectious pressure will be rise to Anሺ ଴ܶ
௡ሻ further units 

of global infectious pressure. For k = 0, 1,, let ௞ܶାଵ
௡  = ଴ܶ

௡ + Anሺ ௞ܶ
௡ሻ. Thus ଵܶ

௡ is the 
total amount of infectious pressure that has been generated in the population after the 
local epidemics initiated by the initial ଴ܶ

௡ units of infectious pressure have occured. 
These ଵܶ

௡ units of infectious pressure may infect further individuals globally leading 
to further local epidemics, after which there will have been a total of ଶܶ

௡ units of 
infectious pressure generated in the population. The process continues until the 
additional infectious pressure generated by a set of local epidemics is insufficient to 
infect further individuals globally. Then ݇* = min { ݇: ௞ܶାଵ

௡  = ௞ܶ
௡} is well defined 

since the population is finite. Let ஶܶ
௡ = ௞ܶכ

௡ . Then ஶܶ
௡ represents the severity of the 

epidemic En and Rn( ஶܶ
௡ሻ its final size. Note that ஶܶ

௡ satisfies 
 ஶܶ

௡ = min{t ≥ 0; t = ଴ܶ
௡ + An(t)}..  (6. 1. 1) 

 
Lemma 6. 1.  
Suppose that there exist γ>2 and δ>6/(γ-2) such that ∑ |݅|௜אԺ

2+γ ߭௜< ∞ and E[Q4+2δ] < 
∞. Then the epidemic process E∞ is α-mixing. Furthermore, ߙ௞(݇ ≥ 1) can be chosen 
so that Dδ < ∞.  
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Proof.  
Let us consider fixed m, k ≥ 1, t ߳ Թ௠ and α, β ߳ Թ. For a ߳Ժ, letܴ௔,௞ ሺܮ௔,௞) denote the 
furthest individual to the right(left) that is infected by the local epidemic having as 
initial infectives all individuals ≤ a + [(k+1)/2] (≥ a + [k/2] + 1).  
 Let ܤ௔,௞ = {ܴ௔,௞ ≥ a + ݇} ڂ {ܮ௔,௞ ≤ a}. Let A1 א ିࣧஶ

௔ (t). Given ܤ௔,௞
௖ , A2 is 

conditionally independent of A1, i. e. Pr(A2 | ܤ௔,௞
௖ ).  

 Thus,  
 |Pr (A1, A2) – Pr (A1) Pr (A2)|  (6. 1. 2) 
 = | Pr (A1, A2, ܤ௔,௞

௖ )(Pr (ܤ௔,௞
௖  )) + Pr (A1, A2, ܤ௔,௞)  

 -(Pr (A1, ܤ௔,௞
௖ ) + Pr (A1, ܤ௔,௞)) (Pr(A2, ܤ௔,௞

௖ )+ Pr(A2, ܤ௔,௞))|.  (6. 1. 3) 
 ≤ | Pr (A1, A2, ܤ௔,௞

௖ ) Pr (ܤ௔,௞
௖  )-Pr (A1, ܤ௔,௞

௖ ) Pr(A2, ܤ௔,௞
௖ ) | + 5 Pr(ܤ௔,௞)   (6. 1. 4) 

 = 5 Pr(ܤ௔,௞)..  (6. 1. 5) 
 
 Let ܴ଴ (-ܮ଴) be the furthest individual to the right(left) that is infected by the local 
epidemic in which the initial infectives are {iא Ժ: i ≤ 0}). It shows that E[ܴ଴

ଵାఊ] < ∞, 
since ∑ |݅|௜אԺ

2+γ ߭௜< ∞. Thus using Markov’s inequality,  
 Pr(ܴ௔,௞ ≥ a + ݇ሻ = Pr(ܴ଴ ≥ [௞

ଶ
]) ≤ [௞

ଶ
]-(1+γ) E[ܴ଴

ଵାఊ].  (6. 1. 6) 
 
 A similar argument shows that Pr(ܮ௔,௞ ≤ a) ≤ [௞

ଶ
]-(1+γ) E[ܮ଴

ଵାఊ], where E[ܮ଴
ଵାఊ] < ∞.  

 Now, Pr(ܤ௔,௞) ≤ Pr(ܴ௔,௞ ≥ a + ݇ሻ + Pr(ܮ௔,௞ ≤ a). So, |Pr (A1, A2) – Pr (A1) Pr (A2)| 
௞= 5ሾ݇ߙ ௞, whereߙ ≥

2ൗ ሿିሺଵାఊሻ(E[ܴ଴
ଵାఊ]. + E[ܮ଴

ଵାఊ]).  (6. 1. 7) 
 
 Clearly, the epidemic is α-mixing, since ߙ௞→0 as k →∞. Moreover, since γ>2 
and δ >6/(γ-2). Then, ܦδ < ∞.  
 
 
7. Poisson Convergence 
Poisson Limit theorem for Sn(∞) may be directly translated in terms of Xn(Tn). This is 
equivalent to a Poisson limit theorem for Xn(n+mn) with the condition that {Sn(∞)} is 
bounded in probability. Observe that Xn(Tn) ≥ Xn(n+mn).  
 
Lemma 7. 1.  
For any α߳Գ P [ Sn (∞ ) ് Xn (n + mn) ] ≤ P [ Sn (∞ ) > a] + a2 [1 – E (Qn) ].  
 
PROOF.  
For a ∈Գ,  
 P [ Sn (∞ ) ് Xn (n + mn) ]  
 ≤ P [Sn (∞) > a] + P [Sn (∞) ≤ a; Sn (∞) ് Xn (n + mn)]  
 = P [ Sn (∞) > a]  
 + ∑ ܲሾܺ݊ ሺܶ݊ሻୟ

௞ୀଵ  = k ] P[Xn (n + mn) ് k | Xn (Tn) = k ].  (7. 1. 1)  
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 Let Tn = n + mn – k, The process { Xn (t), t ≥ 0 } is a decreasing Markov chain 
with,  
 Xn (t) = d MB (n, ∏ ܳ௡

௧
ௌୀଵ , S), t ≥ 1..  (7. 1. 2) 

 AT time Tn, the state Xn (Tn) has the same law as the variable Sn (∞) for t > ζ ≥ 0,  
 P[ Xn (t) ് k | Xn ( t – ζ) = k ] = 1 – P[ Xn (t) = k | Xn ( t – ζ) = k ]  (7. 1. 3) 
 = 1 – P[MB (k, ∏ ܳ௡

௧
ௌୀ୲ – ζାଵ , S) = k]  (7. 1. 4) 

 = 1 – [E(Qk
n )]ζ.  (7. 1. 5) 

 ≤ k ζ[ 1 – E( Qn )]..  (7. 1. 6) 
 
 Using equation (7. 1. 7) 
 P[Sn (∞) ് Xn (n + mn)] ≤ P [ Sn (∞) > a] + [1 – E (Qn )] ∑ ݇2ୟ

௞ୀଵ  P [Xn (Tn) = k] 
 
7. 2. 1Threshold behaviour 
Suppose that the Ci ( i∈ N), Si( i∈ N) and Ai( i∈ N) are each identically distributed 
and let C, S and A be distributed according to C1, S1 and A1 respectivelty. Suppose 
also that P ( i էj) = P(( j էi) ( i, j∈ N). A sufficient condition for this is λL

ij = λL
ij (i, 

j∈ N).  
 Let us consider an epidemic initiated by a small number of infectives in a large 
population. Suppose that P ( C < ∞ ) = 1. Each global infection initiates a new local 
infectious clump. During the early stages of the epidemic, the probability that these 
clumps intersect is very small. Thus the process of infected clumps can be 
approximated by a branching process. Let R be the total number of global 
contactsindependently at the points of Poisson processes with rate λG, R follows a 
Poisson distribution with random mean λGA. A global epidemic occurs if in the limit 
as N → ∞, the epidemic infects infinitely many individuals. Thus a global epidemic 
occurs if and only if the branching process does not go extinct.  
 Let R* = E[R] and fR (S) = E[SR] be respectively the mean and probability 
generating function of the offspring distribution of the branching process.  
 Then,  
 R* = E[ E [R|A]] = λG E[A] = λG E[A] = λG E[C] E[T1].  (7. 2. 2) 
 
and  
 fR(S) = E[SR] = E [E[SR | A]] = E[exp (-λGA (1 – S))].   (7. 2. 3) 
Since conditional upon A, R has a Poisson distribution with mean λGA. Thus,  
 fR(S) = ψ (λG (1 – S) (S ∈ [0, 1])...  (7. 2. 4) 
 
where ψ(θ) = E [exp(-θA)] (θ ≥ 0) is the moment generating function of A. A global 
epidemic occurs with non-zero probability if and only if R* > 1, and if the epidemic is 
initiated by a single infective, the probability that a global epidemic occurs is 1 – p, 
where p is the smallest root of fR(S) = S in [0, 1].  
 
7. 3. 1. Poisson Approximation for Survivors of the Epidemic 
Let ߰i

n (t) = 1 if individuals i’s Susceptibility set avoids global infection from the first 
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t infectives in a population of size n and ߰i
n (t) = 0.  

 Let Yn (t) = ∑ ߰௜೙௜ ఢ ௎೙ (t) = 0. Clearly for all t ≥ 0.  
 ߰i

n (t) ≤ θi
n (t) (1 ≤ i ≤ n).  

 Tn infectives in the epidemic infects any of the remaining Sn Susceptibles either 
locally or globally. Then Tn infectives belongs to the Susceptibility set of a remaining 
Susceptible. Therefore, θi

n (Tn) = 1 implies that ߰i
n (Tn) = 1.  

 So, ߰i
n (Tn) = θi

n (Tn). Then, Yn (Tn) = Xn (Tn). Also, note that both Xn and Yn are 
increasing in t.  
 Let Rn be the set of individuals who remain susceptible during En and let Wn be 
the set of initial susceptibles who avoid global infection from the first n − [nδ] 
infectives. Then, if Tn ≥ n − [nδ]. That Rn ⊆ Wn.  
 Let An = { ∃i, j ∈ Un : i, j ∈ Rn, i ≠ j, j ∈ Si

n }, Bc
n = { the individuals in Rn fail to 

become infectious} and Dn = { ∃i, j ∈ Un : i, j ∈ Wn, i ≠ j, j ∈ Si
n }.  
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