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Abstract: 
 

Let us consider a stochastic SIR epidemic model in which individuals may 
make infectious contacts in two ways, both within households and along the 
edges of a random graph describing additional social contacts. Heuristically 
motivated branching process approximations are described. In case the number 
of initially infective individuals stays small, a branching process 
approximation for the number of infectives is in force. The network is 
modelled by a random intersection graph.  
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1. Introduction: 
The population grouped into households, with infectious contacts at a given per-pair 
rate, where individuals also make global contacts along the edges of a random graph 
over the whole population. The early stages of the epidemic can be approximated by a 
suitable branching process. A coupling argument is used to make this approximation 
precise in the limit as n → ∞. If the relation between the number of individuals and 
the number of groups is chosen appropriately, this leads to a graph where the amount 
of clustering can be tuned by adjusting the parameters of the model. The threshold 
parameter R* thus provides a natural generalization of Ro to two levels of mixing, but 
we must emphasize that R* is a group-to-group or more precisely clump-to-clump 
reproductive ratio: it is the expected number of clumps contacted by all individuals in 
the clump of a random individual. Moreover, this approximation can be made precise 
by considering a sequence of epidemics in which the number of groups m → ∞. This 
enables us to determine a threshold parameter R* for our epidemic, such that, in the 
limit as m → ∞, global epidemics occur with nonzero probability if and only if R* > 1. 
Here, a global epidemic is one which affects infinitely many groups as m → ∞. The 
probability that a global epidemic occurs and various properties of nonglobal 
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epidemics. Suppose that the population comprises of n individuals located in one-
dimensional space. Label the individuals sequentially 1 through n and, to avoid 
boundary problems it is convenient to take the space to be the circumference of a 
circle, so that individuals 1 and n are neighbours. The epidemic is initiated by a 
number of individuals becoming infected at time t = 0, with the remaining individuals 
all assumed to be susceptible.  
 
 
2. Branching process approximation: 
Let us consider a sequence (E n) of such epidemics, indexed by the population size n, 
in which the nth epidemic has initially 1 infective and n-1 susceptibles, with the initial 
infective being chosen uniformly from the n individuals in the population.  
 The approximating branching process is based not on infectives but on clumps of 
infectives. Let δn

ijk and δ ijk (i, j, k, n = 1, 2,. ) be independent random variables, where 
for each n = 1, 2,, the {δn

ijk } ‘s are independent and identically distributed with 
Pr(δn

ijk = l ) = vn
l ( l = -[ (n – 1) / 2], - [ ( n – 1) / 2] + 1,, [n/2] ) and the {δijk } ‘s are 

independent and identically distributed with Pr (δn
ijk = l ) = vl ( l ∈ z ). Consider a 

sequence of independent and identically distributed epidemics Ci ( i = 1, 2, ) 
constructed as follows. For fixed i, consider a population of infinitely many 
individuals in one-dimensional space, where each individual has two neighbours, one 
on each side. Assume that there is an initial infective at the origin while the rest of the 
population is initially susceptible.  
 
 
3. Forward process: 
The threshold parameter R* = E [Ĉ]. Label the individuals in a household 0, 1,, n -1, 
with individual 0 the initial infective, and define X i to be the indicator of the event 
that individual i is infected in the local epidemic and Ci to be the number of global 
neighbours with which i makes infectious contact, if I were to become infected. Then 
 Ĉ = Co + ∑ ିଵ݅ܥ ݅ܺ

ୀଵ .  (3. 1)  
 Since C1 and X1 are independent and (C 1, X 1 ), (C 2, X 2 ),.. ( C n-1, X n-1) are 
identically distributed, that 
 R* = E [Co] + E[T] E[C1],..  (3. 2)  
 Where T is the final size of the within-household epidemic.  
 
3. 1. 1. Zero or infinite infectious period: 
Suppose that Զ (I = ∞) = 1 - Զ (I = 0) =  for some [1 .0] ߳ . For the moment we 
ignore the differences between the initial and subsequent generations and denote the 
generic offspring random variable by unadorned C.  

 C ൌ ൜
0, 1 ݕݐ݈ܾܾ݅݅ܽݎ ݄ݐ݅ݓ െ ,

ܥ  ∑ ܥ
ିଵ
ୀଵ , , ݕݐ݈ܾܾ݅݅ܽݎ ݄ݐ݅ݓ   

 Where ݅ܥ is the number of global neighbours infected by an infectious individual 
i. Thus ܥ equality distributed in ܭ and C1, C2,, Cn-1 are independent and identically 
distributed with 
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 Ci ൌ ൜ 0, 1 ݕݐ݈ܾܾ݅݅ܽݎ ݄ݐ݅ݓ െ ,
,ܭ . ݕݐ݈ܾܾ݅݅ܽݎ ݄ݐ݅ݓ  

 Also note that the number N say, of the n -1 Ci’s which take the value ܭ. i. e. the 
number of initially susceptible individuals in the household with I = ∞ is binomially 
distributed, with parameters n -1 and . Therefore,  
 fC(s) = ॱ[sC] = (1 െ బశݏ]ॱ  + so ( ∑ 

షభ
సభ ] 

 = 1 െ ∑ݏ]ॱ [బݏ]ॱ +  
ಿ
సభ ] 

 = 1 െ )݂బ(s) ே݂  +  ݂(s) )  
 = 1 െ ݂బ(s) (1  +  െ     ݂(s) ) n-1,  (3. 3)  
 Where ܭ is D or d in the initial generation and Ď -1 in subsequent generations.  
 
3. 1. 2. Fixed infectious period: 
Suppose that Զ (I = c) = 1 for some c > 0. Again temporarily ignore the differences 
between the initial and subsequent generations, label the individuals 0, 1,, n-1 and 
denote by Ci the number of global neighbours infected by an infections individual i. 
Then, letting T denote the finial size of the within-household epidemic. C = C0 + 
∑ ܥ

்
ୀଵ  and, conditional on the final size, C1, C2,., CT are mututally independent. Now 

Ci | Ki ~ Bin (Ki, 1 - ݁ିఒಸ).  
 So ݂(s) = ݂(1-ீ + sீ), where 1 = ீ - ݁ିఒಸ. Thus, by the usual formula for 
the probability generating functions of a random sum.  
 ݂(s) = ݂బ(s) ்݂ ( ݂భ(s) ) = ݂బ( 1- ீ + sீሻ ்݂ ( ݂(1 - ீ + sீ) )  (4 .3)  
 Where again ܭ is D or d in the initial generation and Ď -1 in subsequent 
generations.  
 
 
4. Backward processes: 
The infectious period distribution and then the relevant Poisson processes, make a list 
of other individuals it would infect were it to be infected itself. The vertices represent 
individuals in the population and we put a directed arc from i to j when, were i to 
become infected, it would make infectious contact with j, if j is in i’s list. The 
susceptibility set of individual i consists of those individuals from which there exists a 
path to in the digraph. Approximate the size of the susceptibility set of an individual 
chosen uniformly at random from the population by the total progeny of an 
appropriate branching process. Each individual j that joins the susceptibility set by 
virtue of a global contact is in a household not previously associated with the 
susceptibility set with high probability, the number of households in each generation 
is approximated well by the branching process.  
 
5. The final outcome of the epidemic: 
Let us consider an edge percolation process on the underlying graph, where each edge 
in the graph is independently removed with probability 1−p and kept with probability 
p. The vertices that belong to the component of the initial infective in the graph so 
obtained correspond to the individuals that have experienced the infection at the end 
of the epidemic. This observation might be useful investigating the final size of the 
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epidemic. If there is a unique giant component in the thinned graph. The outcome of 
the percolation process contains a unique cluster of order n – then the relative size of 
this component gives the probability of an outbreak of order n in the epidemic. Such 
an outbreak coincides with the probability of explosion in the branching process 
describing the initial stages of the epidemic.  
 Consider an arbitrary graph with n vertices and k = O (n) edges and assume that 
the clustering equals 1. This implies that all subgraphs are complete. Hence, with n max 

denoting the size of the largest subgraph, It follows that n max ≤ O( √݇ ) = O ( √݊ ), 
that is, the relative size of the largest component tends to zero.  
 
 
6. Early stages-Threshold parameter:  
Let T b e the final size of a local epidemic amongst n -1 initial susceptible, we find 
that  
 R* = E Co + E C 1 

 = ( µ Ď-1 + µT µD ) (1 - φ (λG) )  
 = ( µD(µT + 1) + ఙଶ

µ
 - 1 ) (1- φ(λG ) ),..  (6. 1)  

 Since EĎ = ED + Var D / ED..  (6. 2)  
 Unless n is very small any analytical formula for µT is very complicated, so we 
evaluate this quantity numerically.  
 
 
7. Analysis of forward process: 
7. 1. 1. Threshold theorem for the epidemic E(m).  
Threshold theorem for the epidemic to establish a bound for the size of the bad set of 
half-edges after k generations of the epidemic E(m). The number of half-edges in this 
set is bounded by 2Ťାଵ

ሺሻ .  
 
Theorem 7. 1: 
For ݇=1, 2.  
(i)  for all ߱ଵ߳ܣଵ, lim՜∞ Զఠሺഘభሻ (Ž

(m) = ݇) = Զ(Ŷ = ݇ሻ ; 
(ii)   lim՜∞ Զ(Ž(m) = ݇) = Զ(Ŷ = ݇ሻ.  
 
Proof: 
Fix ߱ଵ߳ ܣଵand let ߛሺሻ  be the number of households infected by ܧሺሻ  before a bad 
half-edge is chosen. Fix ݇ ߳Գ. Then,  
 ঐሺఠభሻ (Ž

(m) = ݇) = ঐሺఠభሻ (Ž
(m) = ݇, ߛሺሻ  ≤ ݇) + ঐሺఠభሻ (Ž

(m)  
  ሺሻ  > ݇).  (7. 1)ߛ ,݇ = 
 Let ࣤ

ሺሻ  (݈= 1, 2, ) be the set of half-edges we should to avoid when choosing the 
݈th household to spread the epidemic to. Then 
ܬ  

ሺሻ  = ቚࣤ
ሺሻ ቚ ≤ 2Ť

ሺሻ ..  (7. 2)  
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 So, ঐሺఠభሻ (ܬ
ሺሻ  ≤ 2 log݉) ≥ ঐሺఠభሻ Ť

ሺሻ 
≤ log݉) → 1.  (7. 3)  

as m →∞. And g(݉ሻ = ݇, hሺ݉ሻ = 2 log݉, lim՜∞ ঐሺఠభሻ ሺߛሺሻ  > ݇) = 1.   (7. 4)  
 Therefore, lim՜∞ ঐሺఠభሻ (Ž

(m) = ݇, ߛሺሻ  ≤ ݇) = 0.  (7. 5)  
and using equation (7. 1),  
 lim՜∞ ঐሺఠభሻ (Ž

(m) = ݇) = lim՜∞ ঐሺఠభሻ ሺŽሺ୫ሻ ൌ  ݇,   ሺሻ  > ݇)  (7. 6)ߛ

 = lim՜∞ ঐሺఠభሻ (Ŷ
ሺሻ  =  ݇,   (݇ <  ሺሻߛ

 = lim՜∞ ঐሺఠభሻ (Ŷ
ሺሻ  = ݇ )  

 = ঐ(Ŷ = ݇),  (7. 7)  
 Further,  
 lim՜∞ Զ ሺŽ

ሺ୫ሻ
ൌ  ݇ሻ = lim՜∞ ॱ[ԶሺŽ

ሺ୫ሻ
ൌ  ݇ሻ ] = Զ(Ŷ = ݇ሻ.  (7. 8)  

 
 
8. Analysis of backward process: 
8. 1. 1. Lower bounding branching processes: 
The generation wise growth of the susceptibility set of a typical individual that is 
susceptible at time ݐ in the forward process, in order to find the asymptotic 
probability that such as individual is ultimately infected, given that major outbreak 
occurs. A branching process ߝሺሻ  which asymptotically bounds ܵሺሻ  from below 
until the susceptibility set covers a proportion ߝ of the households in the population. 
An almost sure bound, the proportion of households that are neighbours of the 
susceptibility set when the size of the susceptibility set is at most ݉ߝ.  
 
 
9. Local infectious clumps and susceptibility sets: 
Let G be the random directed graph on N in which for any ordered pair ( i, j) of 
distinct individuals there is a directed arc from i to j if and only if i, if infected, 
contacts j locally. For i, j ∈N, wirte iէj if and only if there is a chain of directed arcs 
from i to j in G, with the convention that iէi. For i∈N, define i’s local infectious 
clump and susceptibility set by ࣶ݅ ൌ ሼ݆∈ N : i էj }. The set of individuals who 
ultimately would be infected by the epidemic if there is no global infection, ( i. e. λG = 
0) and only individual i is initially infected. In household model, if λL and n are held 
fixed as m varies, then the distribution of Ci, Si, and Ai are each invariant to N.  
 
 
10. Threshold Behaviour: 
Suppose that the Ci ( i ∈N) are each identically distributed. Let C, S and A be 
distributed according to C1, S1 and A1, respectively. Suppose also that P (iէj) = P 
(jէi) (i, j ∈ N ). A sufficient condition for this is λL

ij = λL
ij ( i, j ∈N ).  

 Consider an epidemic initiated by a small number of infectives in a large 
population. Suppose that P( C < ∞ ) = 1. Each global infection initiates a new local 
infectious clump. During the early stages of the epidemic, the probability that these 
clumps intersect is very small, zero in the limit as N → ∞. Thus, the process of 
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infected clumps can be approximated by a branching process, in which the offspring 
of a given clump are the global contacts. Let R be the total number of global contacts 
emanating from a typical clump. Since infectious individuals make global contacts 
independently at the points of Poisson processes with rate λG, R follows a Poisson 
distribution with random mean λGA. A global epidemic occurs if in the limit as N → 
∞ the epidemic infects infinitely many individuals. Thus, a global epidemic occurs if 
and only if the branching process does not go extinct.  
 
 
11. Vaccination strategies in relation to local thresholds:  
In a homogeneously mixing population, the minimum proportion v that to vaccinate 
to render the remaining susceptible population sub-threshold is given by R′

G = ( 1 –v) 
RG = 1, that is we require v ≤ 1 – 1 / RG. The two levels of mixing, the basic 
reproductive ratio is R* = µRG. For a population divided into large groups, R* can take 
large values, since µ will be significant proportion of group size.  
 For the groups or households model, one strategy is to vaccinate whole groups. 
Let us assume for simplicity that if they are of different sizes, we choose groups at 
random, that is, according to the distribution {πk}. Then µ will be unchanged, so that 
the overall reproductive ratio will simply become R′

* = ( 1 –v) R*.  
 
 
12. Final outcome of the epidemic process En: 
Suppose that the epidemic process En is initiated by exposing the population to Tn

o 
units of global infectious pressure. The local epidemics created by individuals who 
succumb to Tn

o units of global infectious pressure will give rise to An(Tn
o ) further 

units of global infectious pressure. For k = 0, 1,., let Tn 
k+1 = Tn

o + An (Tn
k). Thus Tn

1 
is the total amount of infectious pressure that has been generated in the population 
after the local epidemics initiated by the initial Tn

o units of infectious pressure have 
occurred. These Tn

1 units of infectious pressure may infect further individuals globally 
leading to further local epidemics, after which there will have been a total of Tn

2 units 
of infecstious pressure generated in the population. The process continues until the 
additional infectious pressure generated by a set of local epidemics is insufficient to 
infect further individuals globally. Then k* = min {k: Tn

k+1 = Tn
k } is well defined. 

Since the population is finite. Let Tn
∞ = Tn

k*.. Tn∞ represents the severity of the 
epidemic En and Rn (Tn

∞) its final size. Note that Tn
∞ satistifes Tn

∞ = min { t ≥ 0: t = 
Tn

o + An (t) }.  
 
 
13. Susceptibility sets and final size: 
Susceptibility set size is again important in determining the mean final size of a major 
outbreak. We can construct the susceptibility set of an individual by generations in a 
manner similar to our analysis of the early stages of the epidemic. This leads to a 
branching process aproximation for the size of an individual’s susceptibility set in the 
limit as m → ∞. The offspring distribution for this branching process is the same as 
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the distribution of the number of individuals that make global contact with the 
members of a given individual’s local susceptibility set.  
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