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Abstract: 
 

In this paper we are reporting the pth lower order and pth lower type of an 
entire function H   ,,r . These function are obtained by various 
characterization in terms of (αn) defined in [1] we also defined coefficient 
characterization of order and type of H   ,,r   
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1. Introduction: 
If H   ,,r  is a function and is harmonic in a neighborhood of origin in R3.  
 H   ,,r  has fallowing expansion in spherical co-ordinate  
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 Where amn

(1) & amn
(2) are different coefficients.  

 This series converges absolutely and uniformly on a compact set of largest open 
ball centered at the origin which omits singularities of H   ,,r .  
 Here x=rcos   y=rcos  cos   z=rsin  sin    
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 For H   ,,r  entire define  
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 M(r) =M(r, H) =
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max  H   ,,r   (1. 2) 

by [1] the pth order ߩ* and pth type T* of H   ,,r  are defined as  
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for p=1 the above definition same with classical definition of order and type.  
 Lower pth order * and lower type *  are defined by [3] as 
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for p=2, 3, 4 ⋯ where log[0]x=x and log[p] =log (log[p-1]x) we have consider pth lower 
order and pth lower type of harmonic function H   ,,r  and obtain various 
characterization of these in terms of (αn).  
 Defined by [1] as 
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 Also, by [1] defined function as  
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 where αn defined above.  

 

Lemma 1: If 
  ,,rH

 is entire Harmonic function the f(z) and g(z) are also entire 
function of complex variable z further 
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 This result is obtained by Frayant [5, pp 27_28].  
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Lemma 2: Let f(z) and g(z) are entire functions defined as above then pth order and 
pth type of f(z) and g(z) are equal.  
 

PROOF Let F(z)= n

on
n za





 be any entire function of pth order ρ*(F)and pth type T*(F)  

 Then it will be known by S. K. Bajpai G. P. Kapoor and O. P. Junenja [2]  
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Here for the function  
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 Hence    gf **    since f and g are of same order using (2. 2) we get
   gTfT **  .  

 
2. Result and Discussions 
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Theorem -1 let   ,,rH  be an entire Harmonic function of pth order and* pth 
lower order *  and pth type T*also lower pth type * if f(z) and g(z) are entire 
functions defined above then 
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Proof : By Srivastava’s study[1] 
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 Hence from above we get  
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since    gg **    
 Thus we obtained (2. 1) and (2. 3) from (2. 5) 
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 Hence from lemma (2) we have (2. 2) and (2. 4).  
 

Theorem 2: Let   ,,rH  be an entire function of order 
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then  
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 From (2. 1) we have 
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Theorem 3: Let   ,,rH  be an entire Harmonic function lower pth order *  and 
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Proof: For an entire function 
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defined by [2]  
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 Using the condition on ][ n  we can easily show as in above theorem  
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 Thus we relation by using (2. 3) 
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