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Abstract 
 
Let us consider a stochastic SIR model for the spread of an epidemic 
amongst a population of individuals, with a random network of social 
contacts, that is also partitioned into households. A threshold 
parameter which determines whether or not an epidemic with few 
initial infectives can become established and lead to a major outbreak 
is obtained, as are the probability that a major outbreak occurs and the 
expected proportion of the population that are ultimately infected by 
such an outbreak, together with methods for calculating these 
quantities. The asymptotic situation in which the local contact 
distribution remains fixed as the population becomes large is 
considered. The concepts of local infectious clump and local 
susceptibility set are used to develop a unified approach to the 
threshold behavior of this class of epidemic models. 
 
Keywords: SIR epidemics, Threshold behaviour, local and global 
contacts, branching processes, random social network. 

 
 

1. Introduction 
The population partitioned into household within which local infectious contacts occur 
and by using a random graph to model contacts, social structures through which global 
infectious contacts might take place. The epidemic model featuring mixing on two 
level local contact with individuals in the same household and global contacts with an 
individuals neighbours in a random network with specified degree distribution. The 
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branching process approximations are developed which lead to a threshold theorem 
determining whether a major outbreak is possible and the probability of such an 
outbreak, as well as results which allow one to determine the expected proportion of 
the population that will be infected by such a major outbreak. Moreover, this 
approximation can be made precise by considering a sequence of epidemics in which 
the number of graphs m→∞. This enables us to determine a threshold parameter R* for 
our epidemic, such that in the limit as m→∞, global epidemics occur with nonzero 
probability if and only if R* > 1. Here, a global epidemic is one which affects infinitely 
many groups as m→∞. The probability that a global epidemic occurs and the mean 
proportion of initial susceptible that are ultimately infected by a global epidemic. 

 
 

2. Epidemic Model 
SIR (Susceptible→infective→removed), infectious period ܫଵ,ܫଶ, ܫ infected individual i 
makes local contacts along each of the ܦ edges emanating from independently at rate 
ீߣ  for each edge, global contacts at rateߣ , with individuals chosen independently and 
uniformly from N. 

Let us see Approximate determinisitic model and Exact deterministic model. 
 
2.1 Approximate determinisitic Model 
For t≥0, Let ݔ(t) and ݕ(t) be the proportion of the population that have degree i and 
are susceptible an d infective, respectively, at time t and (ݐ)ݕ= ∑ ஶݕ

ୀଵ (t). 
 
 ௗ௫
ௗ௧

= − ݔݕ ீߣ−
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This model make three approximations 
(i)Globally contacted individuals loss one neighbour on infection 
(ii) Allows repeated local transmission down same edge 
(iii)Effective degrees of individuals do not decrease as epidemic progresses. 
 

2.2 Exact deterministic model 
Let us consider ݔ(t) and ݕ(t) be the proportion of the population that have effective 
degree i and are susceptible and infective, respectively, at time t. 
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and (ݐ)ݕ =  ∑ ∞ݕ
ୀଵ  (2.6)  .(ݐ)

3. Branching Process Approximation 
The early stages of an epidemic by comparing it with a branching process which 
approximates the proliferation of infected households. The local epidemic initiated by 
the initial infective, then let the individuals so infected make their global contacts.Then 
the households infected by an individual itself infected in the within-household 
epidemic in a household in generation n are in generation n+1.  

 The degree distribution of a type- j primary individual is different to that of a type-
j secondary individual. The distribution of the number of susceptible neighbours of 
such a secondary individual is the same as that of D(j), this is also true of the primary 
individual in generation zero, the initial case in the epidemic. However, the primary 
case in a subsequently infected household, supposing it is a type-j individual and was 
infected by a type-i individual, has the size-biased degree distribution ࡰ෩ (), where, for 
d ∈ ℤା

 , P (ࡰ෩ ()=d )=݀ௗ
()/ ߤ

(). The distribution of the number of susceptible 
neighbours of such a primary individual in the early stages of an epidemic is thus the 
same as that of ࡰ() = ෩ࡰ () − ݁. The probability generating functions ݂(ೕ)(ݏ) =
 ݂(ೕ)

()(ݏ) / ߤ
().In addition, we define ߤ

()=E[ࡰ
()]. It follows easy that 

 

ߤ 
() =


ವ(ೕ)
൫శೖ൯(௦)|௦ୀଵ
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(ೕ) = ቐ

ܧ ቂܦ
()ܦ

()ቃ ߤ
()ൗ  ݂݅ ݅ ≠ ݇,

ܧ ቂܦ
() ቀܦ

() −  1ቁቃ ߤ
()ൗ  ݂݅ ݅ = ݇.

  (3.1) 

 
The dependence of the primary individual’s degree distribution on both its type and 

also that of the individual who infected it means that the households in the branching 
process approximation must be typed according to both of these features. Thus, in the 
multitype branching processes of infected households there are ܬଶ types, a type (݅, ݅ᇱ) 
households (݅, ݅ᇱ ∈ J) being one where the primary individual is of type ݅ᇱ and was 
infected by a type i individual. If, ߣᇲ

ᇲߤ (ீ)
()=0 then type( ݅, ݅ᇱ) households cannot appear 

in the branching processes. 
 
 

4. Threshold Parameter 
To calculate ܴ∗ let us first condition on the size of the household that the globally 
infected individual is in, i.e, 
 

 ॱ[ܥሚ]=∑ ஶߩ
ୀଵ  ॱ[ ܥሚ()],  .(4.1) 

 

Where ܥሚ () is the random variable ܥሚ conditional on the household being of size n 
and ߩ is the size-biased household size distribution, given by ߩ = ߩ݊ ∕ ∑ ݆ஶ

ୀଵ  .ߩ
This size biasing arises because an individual chosen uniformly at random from the 
population is in a household of size n with probability proportional to ݊ߩ. Then,let us 



Dr. T. Vasanthi & Miss. S. Subasri 

 

52

decompose ܥሚ() into the number of global infections emanating from each member of 
the household. 

ሚ()ܥ  = ∑ + ܥ ߯ିଵ
ୀଵ  ,  (4.2)ܥ 

 
Where we have labeled the individuals in the household 0,1,.,n-1, with individual 0 

being the globally infected initial infective ߯ is the indicator of the event that 
individual i is infected by the local epidemic intiated by the primary infective and ܥ is 
the number of global infections made by individual i. The random variables 
,ଵܥ) ߯ଵ), ,(ଶ,߯ଶܥ) .  ,have the same distribution. Also, for each i= 1,2,,n-1 (ିଵ,߯ିଵܥ)
whether individual i is infected by the local epidemic is clearly independent of 
individual i’s infectious period if it becomes infective, so ߯ and ܥ are independent. 
Thus, taking expectations of equation (5.2), 

 
 ॱ[ܥሚ()] = ॱ[ܥ] + ॱ[ܶ()] ॱ[ܥଵ],  (4.3) 

 
Where ܶ() = ∑ ߯ିଵ

ୀଵ  is the final size of the local epidemic amongst the initial 
susceptible in the household. 

 
4.1 Threshold parameter and probability of a major outbreak 
The threshold parameter ܴ∗ for our epidemic model, the largest eigenvalue of the ܬଶ × 
ଶ mean matrix M. The entries ෝ݉൫ᇲ൯(ᇲ)=E[݅݅ᇱሚೕೕᇲܬ ] ( (݅, ݅ᇱ), (݆, ݆ᇱ) ∈  ࣤଶ) of the mean 
matrix can be written as 

 ෝ݉൫ᇲ൯(ᇲ) = ∑ ߩ
(ᇲ)

ఢࣨ ᇲߤᇲߜ) 
(ᇲ ) + (E[ ܶ

ᇲ])݆ఓೕᇲ
(ೕ)

ᇲ (
(ீ),  . (4.4) 

 
Where ߩ

() = ݊ߩ / ∑ ݊ᇱᇲఢࣨ  ᇱ is the probability that a type-i individual chosen݊ߩ 
uniformly at random from all type-i individuals is in a household of category ࢇࢀ , is 
the final size of a standard ࡶ- type SIR epidemic with  individuals, ࢇ of which are 
initially infective, 

(ீ)=1 − ߶() (ߣ
(ீ)) is the marginal probability that an infectious 

type i individual contacts a given type j global neighbour and ߜ is the Kronecker 
delta. 

 
 

5. Expected Relative Final Size of a Major Outbreak 
The offspring of a household in which individual i is the primary individual either the 
individual whose susceptibility set we are considering or one that has joined the 
susceptibility set of interest by way of a global contact in this process are those 
households with a member who globally infects a member of i’s local susceptibility 
set.  

 
 



Stochastic SIR Epidemic on a Random Network and Household Structure 53 

 

Theorem 5.1.1 
For s ϵ [0,1], the PGFs of B and ܤ෨  are given, respectively, by 
 

݂(ݏ) = ∑ ஶߩ
ୀଵ ݂  (1 − ீ  ெ()݂ (ீݏ +   ( ݂  (1 − ீ  ீݏ +  ))  (5.1) 

and 
 ݂෨ (ݏ) = ∑ ஶߩ

ୀଵ ݂෩ିଵ (1 − ீݏ + ீ  ) ݂ெ()  ( ݂  (1− ீ   (5.2).  ,((ீݏ + 
 
Where the random variable ܯ() is the size of the local susceptibility set of a 

typical individual residing in a household of size n, not counting that individual. 
 
Proof 
Let us consider B be a random variable which could be either B or ܤ෨  the differences in 
the calculation are only slight and are pointed out when they arise. The first step is to 
condition on the size of the household individual i is in, so 
 

 ݂(ݏ) = ∑ ஶߩ
ୀଵ  ݂() (ݏ),  (5.3) 

 
Where ܤ() is the quantity B conditioned on the household size of individual i 

being n, then decompose ܤ() into the number of global contacts made with each 
member of i’s local susceptibility set, i.e. 

 
()ܤ  = ∑ + ܤ ெ()ܤ

ୀଵ ,  (5.4) 
 
Where ܤ is the number of contacts made with individual j and ܯ() is the size of 

i’s local susceptibility set, not counting i itself. If ܯ()=0 theni’s local susceptibility 
set consists only of i itself and the sum in (6.4) is empty and equal to 0. Now ܤ | ܭ ~ 
Bin(ܭ, ீ), where ܭ is the number of global neighbours of j not already in the 
susceptibility set and ீ  = 1 −  is the probability that a given global contact is (ீߣ)߶ 
made. Let us do not need to condition on the infection on the infectious period of 
individual j because the contacts we are considering come from other individuals, the 
independence of the infectious periods of these individuals implies that the events that 
each of these individuals contacts j are also independent.  

 Let us first note that, by independence, ݂() (ݏ)  = ॱ[ݏ()] 
 

 =ॱ[ݏబ] ॱ[ݏ ∑ ெ()ܤ
ୀଵ ]. 

Now,  
 ॱ[ݏబ]=ॱ[ॱ[ݏబ |ܭ]]=ॱ[(1− (1 − ீ   +  [బ(ீݏ 
= ݂బ(1 −  (5.5).  ,(ீݏ + ீ 

 
Where ݂బ is either ݂  or ݂෩ିଵ, as above.  
Similarly, 
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 ॱ[ݏ∑ ೕಾ()
ೕసభ ] = ॱ[ॱ ݏ∑ ೕಾ()

ೕసభ ฬ ,ଶܭ,ଵܭ,()ܯ .   ]]  .(5.6)ܭ,

=ॱ [∏ (1− ீ   + ெ()(ீݏ 
ୀଵ  ]  (5.7) 

 
=ॱ[( ݂(1 − ீ   + ெ()((ீݏ 

]  (5.8) 
 
=݂ெ()  ( ݂(1 − ீ  ீݏ +  )).  (5.9) 

Thus, 
 ॱ[ݏ]= ݂బ(1− ீ  ) ெ()݂ (ீݏ +  ݂(1 −  (5.10) ((ீݏ + ீ 

 
So, now denoting the offspring distribution random variable for the first generation 

by B and for subsequent generations by ܤ෨  and substituting equation (5.10) into 
equation (5.3) we get the equation (5.1) and (5.2). 

 
 

6. Standard Household Model and Networked Household model 
with the same Outcomes 

The models are effectively the same if the corresponding approximating branching 
processes have the same distribution in both models, which is equivalent to their 
offspring distributions having the same distribution. To simplify the presentation we 
assume that the household size distributions are the same, so it is sufficient to consider 
the case where the household size n is fixed. The parameters of the NHM by I, D, ீߣ  
and ߣ and those of the SHM by ܫᇱ, ீߣᇱ  and ߣᇱ  . Note that although ߣ and ߣᇱ  have the 
same interpretation,, ீߣᇱ  is a total contact rate whilst ீߣ  is a per-pair contact rate. We 
observe first that the decomposition (6.4) of the random variable for the offspring in 
the backward branching processes in the NHM is ܤ() = ∑ + ܤ ெ()ܤ

ୀଵ , where 
,ଵܤ,ܤ ,ଵܤ ିଵ are independent, withܤ,  ~ܤ or (ீ,D)~ Binܤ and (ீ,D)ିଵ ~ Binܤ,
Bin(ܦ෩ −1,ீ) according as we are looking at the first or subsequent generations.  

 It follows from the homogeneously mixing nature of the global contacts in the 
SHM that the corresponding decomposition,ܤ()ᇲ = ᇱܤ +  ∑ ᇱெ()ᇲܤ

ୀଵ , has ܤᇱ ଵᇱܤ, , ିଵᇱܤ,  
as independent and identically distributed Poi(ீߣᇱ  ூᇲ) random variables. By consideringߤ
the PGFs of ܤ(ଵ) and ܤ(ଵ)ᇲ, and in particular their factorial moments, the distributions 
of ܤ(ଵ) and ܤ(ଵ)ᇲ are different unless ܦ෩ −  1 ~ Poi(ߤ), which implies that D ~ 
Poi(ߤ), and ߤீ = ᇱீߣ  The backward .(ீߤ) ~ Poiܤ then (ߤ)ூᇲ. If D ~ Poiߤ 
processes agree if and only if  

 
ᇱீߣ  (1ߤூୀߤ −  (6.1)  ,((ீߣ)߶ 

 
where ߤூୀ  ॱ[ܫ]. Note that if this is the case then the expected relative final size of a 

major outbreak z is the same for the two models, as is the threshold parameter ܴ ∗. 
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7. Vaccination 
The two aspects of vaccination that need to be specified are the vaccine action model, 
i.e. the effect of vaccination on an individual’s susceptibility and infectivity, and the 
vaccine allocation model that describes which members of the population are actually 
vaccinated. Initially we restrict our attention to a vaccine action known as non-random, 
where vaccinated individuals of the same type all have the same response to 
vaccination. We assume that, for each iϵࣤ, a vaccinated type-i individual has relative 
susceptibility ܽ and, if it becomes infected, relative infectivity ܾ. The rate of each 
Poisson process associated with infection of such a vaccinated individual is multiplied 
by ܽ and, if infected, the rates at which it makes infectious contacts are all multiplied 
by ܾ. Typically ܽ and ܾ are both in the interval [0,1], but this is not necessary, and 
for convenience we write ࢇ=( ܽ, ݆ ߳ ࣤ ) and ࢈ = ( ܾ, ݆ ߳ ࣤ ). If 0=ࢇ the vaccine is 
called perfect, whilst if ࢈ =  so vaccination affects only susceptibility, it is called 
leaky. 
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