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Abstract 
 
We take a simple mathematical model, with the aim of making clear 
some of the essential relations between epidemiological parameters 
and the overall course of HIV infection with various populations. Such 
models help to clarify what kinds of epidemiological data are needed 
to make predictions. We assume constant infectiousness, a constant 
rate of movement from HIV infection to AIDS disease and the same 
average rate of acquiring new heterosexual partners for all individuals. 
We begin with an analytic treatment of the demographic effects of 
HIV/AIDS, using a basic model in which male-to-female and female-
to-male transmission rates are assumed equal. Some refinements to this 
basic model are discussed. 
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1. Introduction 
Mathematical models to study the overall dynamics of transmission of HIV infections 
among particular risk groups. The models are essentially those of conventional 
mathematical epidemiology but modified to take account of important special features 
that make the transmission dynamics of HIV significantly different from that of, say, 
measles. Mathematical models of the transmission dynamics of HIV can facilitate the 
indirect assessment of certain epidemiological parameters, clarify what data is required 
to predict future trends, make predictions under various specified assumptions about 
the course of infection in individuals and patterns of sexual activity within defined 
populations (or changes therein) and, more generally, provide a template to guide the 
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interpretation of observed trends. These models explore the epidemiology of 
HIV/AIDS, but do not systematically explore the demographic implications. This basic 
model is defined, and its dynamical properties are discussed. It so happens that this 
basic model can be solved analytically; the general analytic solution is given and 
discussed. Some refinements to this basic model are also given. 

 
 

2. A Basic Model with Demography and Epidemiology  
2.1 Definition of the Model 
Let us consider first the homosexual transmission of HIV within a population of males. 
Let the total population N(t) at time t be subdivided into X(t) susceptibles and Y(t) 
infecteds (assumed to also infectious) It is assumed that all infecteds move at a 
constant rate υ (that is, after an average incubation time 1/ υ) to develop full-blown 
AIDS, at which point they are regarded for the purpose of this model as effectively 
being removed from the population. Deaths from all other causes occur at a constant 
rate μ. 

This simple system is described by the pair of first-order differential equations: 
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The dynamics of the total population, N=X+Y, thus obeys 
 

ௗே
ௗ௧

= ܰ ߤ– ܤ  − υܻ.   (3) 
 
Here B(t) is the net rate at which new recruits appear in this population, and λ(t) is 

the usual “force of infection”, representing the probability per unit time that a given 
susceptible will become infected. For a sexually transmitted disease such as HIV, we 
may write 

 
λ=βcY/ N.  (4) 

 
where β is the probability of acquiring infection from any one infected partner, 

Y/N is the probability that a randomly chosen partner will be infected, and c is the 
average rate at which partners are acquired. 

The effective average over the distribution by degrees of sexual activity, c, is given 
explicitly as ܿ = ∑ ݅ଶܰ ∑ ܰ = ݉ +⁄ ଶߪ ݉⁄ , where m is the mean and ߪଶ the variance 
of the distribution of the number of new sexual partners per unit of time. Thus, c is not 
simply the mean but the mean plus the ratio of variance to mean, which reflects the 
disproportionate role played by highly active individuals, who are both more likely to 
acquire infection and more likely to transmit it. The total population size N may be 
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roughly partitioned into subgroups of size ܰ, each of whom on the average acquire i 
new sexual partners per unit time (whenܰ = ∑ ܰ ).  

The one additional assumption-which puts the demography into the closed system 
of equations––concerns the input of susceptible, B, which is given by the net birth rate: 

 
ܤ = ν [ܰ − (1 −  (5)  [ ܻ(ߝ

 
where ν is the per capita birth rate (females per female, or equivalently offspring 

per capita for a 50:50 sex ratio) in the absence of infection. Let us assume that a 
fraction ε of all offspring born to infected mothers survive, while a fraction 1 –ε die 
effectively at birth; thus the net birth rate is diminished below νN by deaths at the rate 
ν (1–ε ) Y, resulting from vertical transmission. 

Equations (1)–(5) give a complete description of the dynamical behaviour of this 
model system, under the interplay of intrinsic demographic factors (births and disease–
free deaths, characterized by the parameters ν and µ) and epidemiological factors 
(horizontal and vertical transmission and resulting deaths, characterised by the 
parameters βc, υ and ε ). Equations (1)-(5) can be written as a pair of equations for N(t) 
and Y(t) 
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= ܰ ൬(ν − (ߤ −  [υ+ (1− [ν(ߝ  
ே
൰  (6) 

 
ௗ
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Let us define r to be the disease-free growth rate of the population, Λ the initial 

exponential growth rate of the infection (from very low values) within the population 
and θ represents the additional mortality rates associated with infection [both from the 
direct effects of horizontally transmitted infection, υ, and from the effects of vertical 
transmission which can depress effective birth rates, ν (1- ε) ]: 

 
r ≡ ν–μ,  (8) 
 
Λ ≡ β c–(μ + υ) ,  (9) 
 
θ ≡ υ + ν (1–ε) .  (10) 
 

Equations (6) and (7) now take the tidier form 
 
ௗே
ௗ௧

= ܰ ቂݎ − ߠ  
ே
ቃ,  (6a) 
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2.2 Reproductive Rate 
Whether an infection can establish itself and spread within a population is determined 
by the key parameter Ro, the basic reproductive rate of infection. Ro is the average 
number of secondary infections produced by one infected individual in the early stages 
of an epidemic (when essentially all contacts are susceptible); clearly the infection can 
maintain itself within the population only if Ro exceeds unity. For a sexually 
transmitted disease(STD), Ro depends on c, which is essentially the average rate at 
which new sexual partners are acquired, on β, the average probability that infection is 
transmitted from an infected individual to a susceptible partner (per partner contact) 
and on the average duration of infectiousness. 

The basic reproductive rate for HIV infection, Ro, is related to the parameters β, c 
and ଵ

(ఓା జ)
 , and hence to Λ by the formula ܴ = ܿߚ  ଵ

(ఓା జ)
 and if Ro <1 there will be no 

epidemic. 
 

2.3 Asymptotic Properties 
The asymptotic behaviour of the pair of Equations (6) and (7) can be determined by 
observing that–so long as Λ > r–both N(t) and Y(t) will eventually settle to behave as 
݁ఘ௧. In the limit t →  ∞, equations (6) and (7) then give two equations for the two 
unknown quantities ߩ ܽ݊݀ Λ , where ҝ is the (asymptotically constant) ratio 

 ே
; 

ߩ = ݎ −  ҝ , (11)ߠ 
ߩ =  ҝ−βc . (12)
  

The asymptotic fraction infected, Λ = 
ே

 , can be written, after some algebraic 
manipulation, as 

= ஃି
(ஃି)ା ఌఔ

  (13) 
 
Asymptotically, the exponential rate at which both the total population, N(t), and 

the number infected, Y(t), grow can be written as  
 

ߩ = ߤ)−  +  υ) +  ఌఔ (ஃ ା ఓାυ)
( ஃିା ఌఔ)

  (14) 
 
this expression for ߩ is positive if ߥߝ exceeds the  and otherwise is 

negative (corresponding to the population declining exponentially). 
 

2.4 Exact Solution of the Basic Model 
For an exact solution of the pair of Equations (6) and (7), let us first define 
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ே (௧)

.   
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ௗ௧

= 
ே

 ቀௗ/ௗ௧


− ௗே/ௗ௧
ே

 ቁ  (15) 



Epidemiological Model of HIV/AIDS with Demographic Consequences 69 

 

We thus have for ∅ (ݐ)the simple logistic equation  
 

ௗ∅
ௗ௧

= ∅ [ܽ − ܾ∅].  (16) 
Here the parameter combinations a and b have been defined for notational 

simplicity as  
a= Λ –r,      (17) 
 
b=a + εν.  (18) 
 

The boundary condition in Equation (16) is that ∅ (0) =  ∆, wher ∆ is defined as 
the fraction of the population who are infected at some initial time t=0: ∆≡ Y(0) / 
N(0). Equation (16) has the routine solution   

 
(ݐ) ∅ =  ∆ೌ

ଵାቀ್ೌቁ∆(ೌିଵ)
  (19) 

 
Notice that if a>0 ( Λ >  will tend to the asymptotic value a/b (ݐ) ∅ the ratio ,(ݎ

obtained above, Equation (13) ; if a<0, the fraction infected tends to zero, even though 
ܴ for the infection may exceed unity. Substituting the explicit expression (19) for 
∅ = ܻ/ܰ into Equation (6) for N(t) and integrating, we get 

 

N(t)=N(0) ݁௧ ቀ1 + 

∆(݁௧ − 1)ቁ

ିఏ/
   (20) 

 
Remember that r is the disease-free population growth rate, Equation (8), and the 

parameter combinations ߠ, ܽ,ܾ are defined by Equations (10), (17), (18) respectively. 
This exact solution confirms the qualitative results obtained above: if a<0, the 
population grows at its disease-free rate, r; if a>0, the population eventually behaves 
as ݁ఘ௧, where the expression ߩ=r–θa/b can be seen to be equivalent to Equation (14). 

In the case where ߩ < 0, so that asymptotically the population declines, these exact 
results enable us to say exactly how long it will take before the population ceases its 
previous pattern of growth, and begins to decline. This turnover point occurs when 
dN/dt=0, which can be seen to occur at a time ݐ given by 

 

ݐ =  ଵ
 ஃି

 ݈݊ ቊ
ቂଵି ∆(್ೌ)ቃ

∆ቂఏି (್ೌ)ቃ
ቋ      (24) 

 
Thus if the fraction infected at t=0 is ∆, then the time elapsed before population 

growth begins to become negative is given roughly by 
 

~ݐ
 (భ∆)

 ஃି
 .  (25) 
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3. Some Refinements to the Basic Model 
3.1 Heterosexual Transmission 
In developed countries, the extent to which HIV infection can be transmitted by 
heterosexual contacts is uncertain. HIV infections in females come from contact with 
bisexual males, transfusion recipients, haemophiliacs and intravenous drug users. If 
such female are not themselves a significant source of infection back into the 
homosexual/bisexual community (through contacts with uninfected bisexuals), we 
would expect the incidence of HIV infections among the female partners of bisexuals 
initially to rise roughly in proportion to the incidence among homosexual males. 

We would expect the ratio of HIV infection among female partners of bisexuals to 
that among bisexual males to be ~ߚଵܿଵ ⁄ܿߚ , where ߚ and c are as previously defined, 
 ଵ is the transmission probability for male-to-female contact, and c1 is the meanߚ
number of new female partners acquired by a bisexual male, per unit time. We expect 
this ratio to be significantly less than unity, because ߚଵ is less than ߚ, and c1 is 
significantly less than c. 

 
3.2 Basic Model with Heterosexual Transmission 
We discussed a basic model HIV transmission in a single-sex population. Now we 
extend to the heterosexual transmission of HIV, and its demographic consequences. 
We should recognize that, in general, transmission rates from males to females are not 
identical with those from females to males. Writing ଵܰ and ଶܰ for the total populations 
of males and females, respectively, and similarly writing ଵܻand ଶܻ for numbers of 
infected males and females, let us replace the pair of Equations (6) and (7) for the 
symmetrical case with the more general system of four equations: 
 

݀ ଵܰ

ݐ݀ = ]ߥ  ଶܰ − (1 − (ߝ ଶܻ] − ߤ ଵܰ −  υ ଵܻ,    (26) 
 

݀ ଶܰ

ݐ݀ =  ν[ ଶܰ − (1− (ߝ ଶܻ]− ߤ ଶܰ −  υ ଶܻ,    (27) 
 

݀ ଵܻ

ݐ݀ = ଶܿଶߚ  ଶܻ

ଶܰ
( ଵܰ −  ଵܻ) − ߤ)  +  υ) ଵܻ,    (28) 

 
݀ ଶܻ

ݐ݀ = ଵܿଵߚ  ଵܻ

ଵܰ
( ଶܰ −  ଶܻ) − ߤ)  +  υ) ଶܻ .    (29) 

 
Here the parameters ν, μ, υ and ε are exactly as defined before. Births depend only 

on the female population (possible effects on fertility of male: female sex ratios below 
unity are ignored), and it is assumed that sex ratios at birth are 50:50, with females 
producing male and female offspring at the equal rates ν. 

The male-to-female transmission probability is ߚଵ, and males acquire new female 
partners at the epidemiologically effective average rate ܿଵ. Thus ߚଵ ܿଵ represents the 
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overall male-to-female transmission rate. Similarly, ߚଶ ܿଶ represents the overall 
female-to-male transmission rate. It should be emphasized that inconsistencies can 
arise in our formulation of equations (26) –(29), because they do not ensure that the 
number of female partners of males remains equal to number of male partners of 
females at all times (which must be true). By ignoring any effects of age structure and 
assuming the initial sex ratio is 50:50 we will have male and female contacts in 
balance before the advent of HIV/AIDS so long as ݉ଵି  ݉ଶ (which, as just mentioned, 
does not necessarily imply ܿଵ  −  ܿଶ ). But AIDS will not usually remove equal 
numbers of males and females in Equations (26)–(29). In this event, the patterns in the 
distributions of acquiring new sexual partners must change over time, in such a way as 
to keep the total number of male and female contacts equal. If we write the 
corresponding, asymptotically constant ratios ଵܻ/ ଵܰ  →  ҝଵ , ଶܻ/ ଶܰ → ҝଶ, and 
ଵܰ/ ଶܰ → ,ߩ then we get four equations for the four quantities ,ߦ ҝଵ, ҝଶ, and  that 

characterize the asymptotic behaviour of this system: 
 

ߩ] + ߤ  + υҝଵ]ߦ = 1] ߥ  − (1 −  ҝଶ],  (30)(ߝ
 
1)ߥ] − (ߝ +  υ]ҝଶ = ߥ  − ߤ  −  (31)  ,ߩ
 
ߩ) + ߤ +  υ)ҝଵୀ ߚଶܿଶҝଶ (1− ҝଵ, ),  (32) 
 
ߩ) + ߤ +  υ)ҝଶୀ ߚଵܿଵҝଵ (1− ҝଶ, ) .  (33) 
 

The asymptotic analysis of the basic model, equations (11) and (12), gave us the 
pair of relations ҝ=(ݎ −  βc, respectively. In this more general / (ߩ - Λ )=and ҝ ߠ/(ߩ
model, equation (30) immediately gives us a relation between ҝଶ and ߩ: 

 
ҝଶ = ି ఘ

ఏ
.  (34) 

 

Here r and θ are exactly as defined earlier in Equations (8) and (10), respectively. 
By eliminating ҝଵ between the two equations (32) and (33), we get a second relation 
between ҝଶ and ߩ, as follows:  

 

ҝଶ =  ఉభభఉమమି (ఘା ఓା υ)మ

ఉమమ (ఉభభା ఘା ఓା υ)
  (35) 

 
The pair of equations (34) and (35) now give us a quadratic equation for ߩ. The 

remaining member of the set of equations (30)–(33), namely Equation (30) give us an 
expression for the asymptotic sex ratio, ߦ = ଵܰ/ ଶܰ,,once ߩ (and thence ҝଶ and ҝଵ) have 
been determined. 

To derive the relation between these more general results and those for the basic, 
symmetric, model, we define ܿߚതതത to be the geometric mean of the transmission 
rates ߚଵ ܿଵ and ߚଶ ܿଶ: 
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തതതܿߚ = ଵ(ଶܿଶߚଵܿଵߚ) ଶ⁄    (36) 
 

Then Equation (35) can be expressed as ҝଶ = ቂ ஃିఘ
ఉതതതത
ቃ  ቂ  ఉതതതതାఘା ఓା 

 ఉതതതതାఈ(ఘା ఓା )
ቃ  (37) 

 
Here we have written Λ =ܿߚ − ߤ) + υ) in direct with the previous definition (9), 

and  α=ߚଶܿଶ/ ܿߚതതത. The transmission of HIV infection to females by bisexual males is a 
process whose initial dynamics is essentially determined by Ro for transmission among 
homosexual males, thereafter the question of its transmission and maintenance by 
purely heterosexual contact arises. The basic reproductive rate for such heterosexual 

transmission of HIV [20], ܴ 
′ , is given by ܴ′ = ଵ(ଶܿଵܿଶߚଵߚ) ଶ⁄

(μ +  υ)൘ . If the second 

factor in square brackets in Equation (37) were put equal to unity, Equations (34) and 
(37) would give exactly the results for ߩ obtained from equations (11) and (12) in the 
basic model, with βc interpreted as the geometric mean of male-to-female and female-
to-male overall transmission rates. This approximation is exact if α =1, and is a good 
approximation so long as ܿߚതതത is significantly greater than μ + υ +ߩ. In general, 
however, we need to solve a quadratic equation to evaluatc ߩ, and to explore the 
properties of Equations (26)–(29) numerically. In short, the symmetric, basic model is 
likely to be a reliable guide to the more general case, provided ܿߚതതത significantly exceeds 
μ+υ +  .ߩ

 
 

4. Conclusion 
Simple mathematical models of the transmission dynamics of human 
immunodeficiency virus help to clarify some of the essential relations between 
epidemiological factors, such as distributed incubation periods and heterogeneity in 
sexual activity, and the overall pattern of the AIDS epidemic. They also help to 
identify what kinds of epidemiological data are needed to make predictions of future 
trends. 
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