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Abstract 

 
This paper is about the study of a specific epidemic model accounting for the effect of 
contact tracing on the spread of an infectious disease. We consider the situation in 
which individuals identified as infected by the public health detection system may 
contribute to detecting other infections individuals by providing information related to 
persons with whom they have had possibly infectious contacts. The control strategy 
that consists examining each individual one has able to identify on the basis of the 
information collected within a certain period is expected to reinforce efficiently the 
standard random – screening based detection and slack considerably the epidemic. We 
consider modeling of the spread of a communicable infections disease, the population 
of interest evolves through demographic, infection and detection processes in a way 
that its temporal evolution is described by a stochastic Markov process. For adequate 
scaling of the demographic, infection and detection rates, it is shown to converge to 
the weak deterministic solution of a PDE system, as a parameter n interpreted as the 
population size which is large. 
From the perspective of the analysis of infection disease data, this approximation 
result may serve a key tool for exploring the asymptotic properties of standard 
inference methods such as maximum likelihood estimation. 
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Introduction: 

In the area of public health practice, by contact – tracing one means the active 
detection mechanism that consists in asking individuals they have had possibly 
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infections contacts and the as the basics of the information provided in striving to find 
those persons in the scientific literature and in the health community within which 
they a generally considered as efficient guidance method for beginning the spread of 
sexually transmissible diseases under control. From the perspective public health 
guidance practice, mathematical modeling of epidemics in presence of a contact 
tracing strategy reinforcing a steering based detection system is a crucial stake, as it 
may help evaluating the impact  of this costly  control measure. In this frame work, 
epidemic models must naturally account for the fact that once detected, an infected 
person keeps on playing a role in the evolution of the epidemic for a certain time by 
helping towards identification of infectious  individuals. 
The main aim of this paper is to generalize the standard SIR model by incorporating a 
structure by age in the subpopulation of detected individuals, age being here the time 
since which a person has been identified as infected. At any time the ‘R’ class is 

described by a point measure, on which the contact – tracing detection rate is 
supposed to depend. In this manner the way an ‘R’ individual contribute to contact – 
tracing detection may be made strongly dependent on the time since her/his detection 
through a given weight function   allowing for great flexibility in the modeling. 
Assuring in particular a large population in which the infections disease is spread 
properties of the mathematical model are thoroughly investigated and preliminary 
statistical questions are tackled. 
In this paper we discuss about a Markov process with an age structured component is 
introduced for modeling the temporal evolution of an epidemic in the presence of 
contact – tracing. a short qualitative description is provided, aiming at giving a insight 
into how the dynamic is driven by  a few key components. The process of interest is 
the solution of a stochastic differential equation (SDE) for which existence and 
uniqueness results are stated. 
 
The stochastic SIR Model with contact - tracing 

Epidemic problems really present a great challenge to probabilists and statisticians. 
Models for the spread of infections are based on hypothesis about such mechanisms 
as infection as detection. The huge diversity of possible hypothesis could give rise to 
an enormous variety of probabilities models with their specific features we shall deal 
with a stochastic epidemic model with reasonably simple structure, while covering 
some important aspects and keeping thus its pertinence from the perspective of 
practical applications. 
The classical stochastic epidemic SIR is a well-studied model that, together with its 
generalizations, has been widely applied. At any time t, a population of size N is 
divided into three categories Si Susceptible, Ii infectious and Ri removed individuals. 
The model assumes that the population is homogeneously mixed. As time Passes,  
some infectives recover and go into the removed category. At the same time, infective 
make contact with susceptible so that Si decreases and Ii increases A particular SIR 
model hypothesizes certain stochastic rates for these two processes. We add a third 
type of transition, Susceptibles are vaccinated and move directly to the removed class. 
The stochastic Process (Si, Ii) is a continuous time Markov chain. The states at time t 
are (Si, Ii)  = (Number of Susceptible,  number of infectives). The initial state (So, Io) 
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is (n, m). The rates of infection and recovery are 
     

     

, 1, 1 / 1

, , 1 2

s i s i at rate si N

s i s i at rate i

   

  
  

Where N is the total population size  n m  . In addition    , 1,s i s i   according to 

a related process which we give in detail as follows. When    , ,t tS I s i  the total 
rate of stochastic evolution of the process is the sum of the rates in (1) and (2). Each 
infected person is ill for an exponentially distributed time with parameter which we 
take equal to 1, for notational convenience and then becomes immune and cannot 
have illness again. At time t, an infected person meets susceptible at a stochastic 

/trate S N  .   At each such meeting time, a susceptible becomes infected, so that St 
decreases by 1 and It increases by 1. At the random transition times of the process
 ,t tS I   authorities respond to the epidemic, Susceptible are vaccinated and leave the 
susceptible class at a rate . The number tR    of immune or recovered persons need 
not be modeled since t t tR n m S I     . So over or later 0tI    for the first time or

0tS   . In either case the epidemic stops and the total epidemic size is the number of 
infections which have occurred, including the initial infectives. 
 

The Population Dynamics 

The Population is structured in to three classes corresponding to the different possible 
states with respect to the infective disease. We adopt the standard SIR terminology for 
denoting the current status of an individual with only differences that R stands here 
for the population of removed individuals willing to take part in the contact – tracing 
program and that it is structured according to the age of detection namely the time 
since a detected individual has been identified by the public health detection system 
as infected. Such a distinction allows for considering heterogeneity in the way earth R 
individual contributes to the contact tracing control.  Hence at any time t  O the 
class of removed individuals is described by    t PR da in M R   the set of point 

measures on R+ for all O < a1 < a2 < , the quantity   1 2,tR a a   represent the number 

of removed individuals who have been detected between 2 1t a and t a   . Here and 

throughout we use the notation    , ,R a R da R     being any positive measure 
on R+ and  any R-integrable functions In a more standard fashion, we shall denote 
by St and It the sizes of the classes of susceptible and infective individuals. 
Individuals immigrate one at a time according to a poisson process of intensity o 
once in the population an individual becomes susceptible and may either leave the 
population without being contaminated or in dependently be infected. Emigrations 
occur in the population at time t ≥ O with the hazard rate 0 St and infections with the 
rate  1 ,t tS I  . Once infected an individual can be discovered by the detection system 
either by random screening or by contact – tracing or else emigrates / dies. The hazard 
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rates associated with these events are respectively  2 3, , , ,t t tI I R     Where

: R R     is a bounded and measurable weight function that determines the 
contribution of a removed individual to the contact – tracing control according to the 
time a she / he has been detected and 1 tI  . 
If detected an individual takes part in the contact – tracing system by providing useful 
information related to her/his (possibly) infectious contacts. we do not consider the 
emigration / death of detected individuals since it is the availability of the information 
that they have given rather than their presence in the system that plays a role in the 
contact – tracing process. In order to avoid possible misunderstanding due to the 
notation, we underline that 1 ( .,.) and 3 (.,.) here denote jump rate functions related 
to the SIR process and not the individual rates. 
 
The events through which the sizes St, It and the point measure Rt evolve are 
numbered as follows. 
Event E=O; recruitment of a susceptible. 
Event E=1; death / emigration of a susceptible  
Event E=2; Infection 
Event E=3; Spontaneous detection of an infective 
Event E=4; Detection of an infective by contact – tracing 
Event E=5; death / emigration of an infection 
 
Definition 1 

Consider a probability space  , ,F P  , on which are defined 

(1) a random vector  0 0,S I   with values in  
2

*N   such that  0 0E S I     (at 
t= O, we assume that no one has been detected yet), 

(2) two intindependent Poisson po measures on    2 1, , , intesR Q dv du and Q dv du with nsity   
dv du  ,  

the Lebesgue measure on R+
2 , and independent from the initial conditions    (So, Io). 

Define    
0

, ,t t t
t

S I R da


     as the Markov process solution of the following system 

of SDEs; 

    

   

      

       

0 0 0 0 1 ,

0 0 1 ,

1 2 3 , ,

2 3 , ,

0 0

0 0

0

0 0

0
0 0

0
0 0 0 0

1 1 ,

1 ,

1 ,

, f 0 1 ,

v v v

v v

v v v

v v v

t

s

t u u S S I

v u

t

s

t u I S

v u

t

I

u I I R
v u

t t

i

t au I I R
v u v u

S S Q dv du

I I Q dv du

Q dv du

R f Q dv du f a





    

  

  

 

  

 

  

  



     

 



  

 



   
 

 

  
   

  

 



  

 

 

 

       3vR da dv 

  

for all  1

bf C R   the set of real bounded  functions of class C1 with bounded 

derivatives. We have denoted by a f   the gradient of  f and by g t    the left limit in 
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t  R of any cadlag functions g:R → R. 
Under H 1 and of definition given above it may be seen that there exists a unique 
strong solution to SDE (3). 
Where H1 is defined as follows. 
 
Assumptive H1: 

The rate functions 1 and 3 are assumed to being to C1 (R+
2), the set of real functions 

of class C1 and R+
2. We denote by s 1, I 1, 1 3   and R 3, their partial 

derivatives. We also suppose that all these functions are locally lispchitz continuous 
and dominated by the mapping  ' 2 ',x x R xx     for K  {1,3}, we assume that  for 
every     N > O,    Lk (N) > O such that  

      
2' ', , , 0, Nx x y y   ,       ' ' ' ', ,k k kx x y y L N x y x y       

and that    ' 2 ' '0, , , ,k k kx x R x x xx        . Finally the weight function  is 
assumed measurable and bounded. 
 

 

Limiting behavior in long time assumptions 

Proposition 1 

Assume that    0f a    as a   considering the Markov process

   
0

, ,t t t
t

S I R da


  introduced in definition 1, we have, whatever the initial 

conditions     
2

*

0 0,S I N  , that     , , , ,0,0t t tS I R da f S   in distribution as t 

→ ∞, denoting by S∞ a poisson random variable of Parameter o / o. 
The law of S∞ is the stationary distribution of the N – valued immigration and death 
process which jumps from k to k + 1 with rate o and from k to k-1 with rate ok. This 
result show that the time of extinctions of the epidemic is almost surely finite.  
In the situation of long-lasting epidemics as in the HIV case, the long term behavior 
of the epidemic conditioned upon its non extinction may be refined by studying quasi-
stationary measures. 
 

Renormalization: 

We consider a sequence          *

0
( , , ) ,

n n n

t t t
t

S I R da n N


  , of SIR processes with 

contact – tracing. For n ≥ 1, 
         

0

, ,
n n n

t t t
t

S I R da


   corresponds to the stochastic 

process described in Definition 1, starting from (So
(n), Io

(n)) of size proportional to n 
and with following rate modifications, the immigration rate is n o, the infection jump 
rate function is n 1 (S(n)/n, I(n)/n), while the contact – tracing jump rate function is  

    3 / , , /
n n

n I n R n  . We denote the                  , , , ,R /
n n n n n n

t t t t t ts i r da S I da n   

the randomized process obtained by re-weighting all individuals of the population by 
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1/n. We assume further that     0 0,
n n

s i   converges in probability to a deterministic 

couple   *2

0 0,s i R as n    
Let 2P    

Moment assumption      * 0 0: sup
P P

n n

p n N
M E s i



   
  

 . 

This moment assumption combined with Assumption H1 implies that the moments of 
order  propagate on compact time intervals [o, T] with T > O. the renormalization   
given above is interpreted in the following example. 
In the case of homogeneous rate functions, the eventual impact of the renormalization 
on the jump rates may be described as follows. 
with  

0 0

n
n   , the immigration / birth rate is assume to the initial population size. 

If the form chosen for  1 ,S I   is either  1 1 /I or SI I S     the renormalized 

infection rate function           1 1 /
n n n n n

I or S I I S      is not affected by the scaling, 

while of one takes  1 1,S I SI    the renormalized rate function    
1 /

n n
S I n   

decreases proportionately to 1/n. This reflects the fault that for large scaling the risk 
of being contaminated by a given infections individual is smaller that for small 
scaling. 
The same remark holds for the contact – tracing rate function  3 , ,I R   . 
 

Proposition : 2 

Let      * 1 2, 0 : , . 1 2,u b Pn N t and f a u f a a function inC R Under H and themome nt conditionM with P      

 

 

   

           

                  
            

0 0 0 1
, 0

,

0 1 1 2 3

0,

2 3

0

,

, , ,

, , 0 , ,

t
n n n n n

t u u u
s n u
t

t
i n n n n n n n n

t t u u u u u

ur n

t t
n n n nn

t t u a u u u u u u u

u

S S t S S i du

M

M i i S i i i r du

M f

r f r f f f i i r du

  

    

  







 
    

  
  
        
  

    
      
 
 







  

is a cod lag L2 – martingale, with predictable quadratic variation given by 
            ,

0 0 1

0

1/ ,

t
s n n n n

u u u
t

u

M n s s i du  


     

                  
               

,

1 1 2 3

0

, 2

2 3

0

1/ , , ,

1/ 0 , ,

t
i n n n n n n

u u u u u
t

u

t
r n n n n

u u u u
t

u

M n s i i i r du

M f n f i i r du

    

  





   

 




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                

                 

, , , ,

1

0

, ,

2 3

0

,M 1/ , , , 0

, 1/ 0 , ,

t
s n i n n n s n r n

u u
t t

u

t
i n r n n n n

u u u u
t

u

M n s I du M M f

M M f n f i i r du



  





  

  





 
 
 

This result follows from the representation given in Definition:1 
Conclusion: 

Since the quadratic variation of the martingale process displayed above is of order 
1/n, results in a deterministic limit by letting n tend to infinity.  
Consider the system of deterministic evolution equation obtained by equating to zero 
the martingale process in proposition 2 

  

      

           

0 0 0 1

0

0 1 1 2 3

0

2 3

0 0

,

, , ,

, , , 0, , ,

t

t u u u

u

t

t u u u u u

u

t

t t u a u u u u

u a

s s s s i du

i i s i i i r du

r f f a u f a u r da f u i i r

  

    

  







 

   

    

 
      

 





 

  

for all  1 2

bf C R  . There exist a unique solution to this deterministic system, to 
which the sequence. 

         
1

, ,
n n n

n

s i r da


  converges in probability . 
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