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Abstract 

This paper examines in detail about SIR epidemic Model and its properties. 

Suppose one or (more) infected person is introduced in to a community of 

individuals more or less susceptible to the disease.The disease spreads from 

the affected to the unaffected by contact infection. Each infected person runs 

through the courseof his sickness and finally is removed from the number of 

those who are sick by recovery or by death.As the epidemic spreads the 

number of unaffected members of the community becomes reduced.Suppose 

the number of persons who escape infection tends to large(infinity) the  total 

number of persons who escapes infection converges in distribution to a 

poisson random variable with mean b where 0<b<∞.The stochastic process of 

the above type shows that when the threshold is large but the population is 

much larger the distribution of the remaining uninfected in a large epidemic 

has approximately the poisson form. 
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Introduction: 

The early work on the mathematical theory of epidemics was invariably of a 

deterministic nature and assured that for given number of susceptibleand infections 

individuals and given attack and removal rates, a certain definite number of fresh 

cases would occur in any specified time. However it is widely realized than an 

appreciable element of chance enters into the conditions under which new infections 

or removals take place. 
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Deterministic Treatment  

Let us first glance at the results obtained in the deterministic case. The following 

treatment, with constant infection and removal rates is substantially that given by 

kermack and Mckendrick though with some slight alterations to their notation. 

 

Let us consider a homogeneously mixing community of n individuals  of whom at 

time t there are x susceptible, y infections cases in circulation and z individuals who 

are isolated, dead or recovered and immune. 

Thus we have x y z n   . 

Now suppose that there is a constant infection rate β and constant removal rate so that 

the number of new infections in time dt is  xydt  and the number of removals from 

circulation is ydt . Let us choose our time scale so that t is replaced by t . Then it is 

easy to see that the course of the epidemic is represented by the differential equations. 
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Where /   the ratio of the removal to infection rate initially when 0t  .we can 

assume that x is approximately equal to n. It is then clear from (1) that epidemic can 

start to build up as this requires  / 0
0

dy dt
t




. Kermack and Mckendrick obtained 

can approximate solution to (1) for epidemics of small magnitude and showed that if 

n v   where v  is small compared with n , an epidemic of total size 2v will occur. 

This constitutes the kermack and Mckendrick’s Threshold Theorem. 

 

Stochastic Treatment :  

Let us use the same definitions of ,x y  and z and shall replace t  by t as before. 

Then on the assumption of homogeneous mixing of the susceptible and infectious 

individuals in circulation the Probability of one new infection taking place in time dt

is xydt , while the probability of one infected person being removed from circulation 

in time dt  is ydt . Let 
( )rs t

P  be the probability that at time t there are r susceptible 

still uninfected and s infections individuals in circulation. 

Let us assume that the epidemic is started by the introduction of a infectious cases 

into a population of n susceptible. It is now easy to show by the usual methods that 

the whole process can be characterized by the partial differential equation for the 

probability generating function π: 
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where

,
rs

r su v p

r s

                                                               (3) 

with limits 0 ,0 ,0r s n a r n s n a             (4) 

 

Equation (2) is substantially that given by Bartlett putting his immigration rate equal 

to zero. 

Let us now use the Laplace transform and its inverse with respect to time given by 

*( ) ( )
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  and c is positive  and greater than the abscissa 

 

of all the residues. 

 

Taking transforms of (2) and (3), and using the boundary condition 

 

 (0) 1Pna           (6) 

We obtain                   

2 * *
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where
, , ,

*
( )

0
r s r s r s

tq p e p t dt



     (9)                                     

 

Substituting (8) in (7) and equating coefficients of r su v , yields fields the recurrence 

relations 


1, 1 , 1

( 1)( 1) ( ) ( 1) 0
r s rs r s

r s q s r q s q  
  

         

and -  ( ) 1 0
na

a n q       (10) 

with 0 ,0 ,0r s n a r n s n s          

Any 
rs

q whose suffix falls outside the prescribed ranges is taken to be identically zero. 

David G. Kendall in his paper deterministic and stochastic epidemics in closed 

populations finds that when m   that the sample epidemic curves will fall broadly 

into classes; those (Corresponding to mode A) which peter out fairly, quickly and 

those (Corresponding to mode B) which approximate to the deterministic epidemic 

curve associated with the k and k equations.  

Epidemic curve (Stochastic epidemic). 

 

                   10     - 

                        - 

                        - 

                        - 

                        - 

0.5 

t  

The continuous curves show that conditional means for model A (J-Shaped) and mode 

B (Peaked). 

 

H.E. Davets arrive at an appropriate formulae for the distribution of total epidemic 

size which are appropriate for large populations. 

 Let  | ,p x    be the probability that there are ultimately x  uninfected 

individuals when initially that were  susceptible and  infective. 

 When the threshold is large but the population size is much large, the 
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distribution of the number remaining uninfected in a large epidemic has 

approximately the Poisson forms with the deterministic mean   e






ξ e-ξ/ρ. 

 

Construction of the Epidemic Process: 

Let n  be originally healthy individuals indexed by i , 1 i n   

and let m   be originally infectious individuals indexed by ,j 1 j m   .            

Let   
1j

m

js


and  
1

i

i

n
s



be independent and identically distributed random                   

Variables(i.i.d) with density te   on  0, , individual j in the original infectious 

group will remain infectious for 
j

s  time units before removal from the population. 

Individual i  in the original healthy group will remain infections for 
i

s time units if he 

becomes infected. 

Let    
1

i

i

n
p



  be   i.i.d random variables with density e-t on [0, ∞),  

independent of the  
j

s  ‘s and   
i

s ‘s . The variable 
i

p  will be thought of as the 

“resistance to infection” of individual i in the original healthy group. Let 

 
 

1

k

k

n
p



be the associated order statistics so that 
     1 2

.......
n

p p p   ) 

 

Let  
i

k
s s  if

  ik

p p . 

Now let the epidemic process proceed as follows. The originally infected individuals

j  remains in the population for 
j

s time units after which he is removed. The healthy 

individuals i accumulates exposure to infection at a rate equal to the number of 

infected individuals present. When the total exposure to infection of healthy 

individuals i  reaches 
i

p individuals i becomes infected and then remains in the 

population for an additional 
i

s  time units before removal. 

It remains toshow that the resulting process is Markov with the correct transition 

probabilities. Suppose    ( ), ( ) ,X t Y t x y . The probability that a particular infected 

individual is removed in the time interval  ,t t  is  o   because the 
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distribution of the
j

s  ‘s and  's
i

s  has constant hazardrate  . The probability that 

exactly one of the y  infected individuals is removed in  ,t t  is therefore 

 y o   . The probability that a particular one of the x  healthy individuals will 

become infected in  ,t t  is  y o  , so that the probability that exactly one of 

the healthy individuals becomes infected is  xy o  . It follows that the transition 

probabilities  are as desired. 

Let   be the number of new infections occurring during the course of  the epidemic. 

If 
 1

1
j

m

j

p s


 , then all originally infections individuals are                             

removed before the resistance to infection of any healthy individual has  exceeded, so 

that 0  . Otherwise, the originally healthy individuals associated with 
 1

p  becomes 

the first new infection and 1  . An easy induction argument shows that 1   is the 

smallest k , 1 k n  , for which 

 

 
1

1 1
jk

m k
i

j i

p s s


 

    

It this equality does not hold for any  k , 1 k n  , then n  . 

 

Define 

 

1 1
j

m
i

j i

R s s


 

      (11) 

 

Then R  is the amount of exposure to infection withstood by those individuals who 

remain healthy at the end of the epidemic and ( )X n    is the number of
i

p ’s  

greater than R . 

Consider a sequence of epidemics with parameter  
k

n ,
k

m and 
k

 1 k   .   Let 
k

  

be the number of new infections in a realization of the 
thk epidemic, so that 

 
k k k

X n    is the number of individuals who escape infection. 

Theorem 1.1 

If ,
k k

n    and 
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 exp ( )k k

k

k

n m
n b




     0 < b < ∞,then ( )

k

x   converges in distribution to a 

Poisson  random variable with mean b. 

 

The proof is given in the following by suppressing the subscript k. 

 

The fact that ρ is 0(n + m) implies that with high probability all but a tiny fraction of 

the population becomes infected. Thus R will be close to 

 

1 1
j i

m n

j i

s s
 

     , 

which is in turn close to ( ) /m n   with high probability. It R  is close enough to 

  /m n  , then ( )X  will equal the number of 
i

p ’s which are greater than 

  /m m  . The number of  
i

p ‘s greater than   /m n  has the distribution 

Binomial  ( )/, m nn e   , which converges in distribution to Poisson  b . 

 The subscript k  will again be suppressedTaking logarithms in  

( )/m nne b   yields 

log log
n m

n b



   

 

so that 
log

m n

n



. Thus ρ is  o m n , but                         

( )m n  is  o   for 0 1   

 

Lemma1.1 

 Let 0 < < 1 be given. If 2( )m n   , then 

 ( ) ( )
( )

m
mP X m n

m n


  



 
      

 
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Proof 

We can view the population of infected individuals as a continuous - time birth and 

death process with a variable birth – rate. 

 The ratio of death – rate to birth rate is / ( )x t , which is less than  

/ ( ( ))m n   , until  ( ) ( )X t m n  . The probability that a birth – and – death 

process starting at m and with a death – rate to birth – rate ratio 1q   is ever absorbed 

at zero is mq . 

 

Lemma 1.2 

 Let 0 < < 1. For n sufficiently large,  

 

 
(1 2 )( )

2
m n

P R





 
   

 

Proof 

We have by lemma 1.1, R is greater than the sum of the first (1 )( )m n   terms of   

      
1 2

1 2
, ,..... , , ,.....

m

n
s s s s s s )    with probability greater than (1 )  for sufficiently 

large n. The sum of first (1 )( )m n   terms has mean 

(1 )( ) /m n   and variance 2(1 )( ) /m n   . The chebyshev inequality implies 

the lemma 1.2. 

 

Lemma 1.3 

Let 0< < 1. For n sufficiently large  

 3( ) 3P X n      

 

Proof: 

The number of pi’s which are greater than (1 2 )( ) /m n    is Binomial 

 (1 2 )( )/, m nn e     . 

This distribution has mean 
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(1 2 ) (1 2 ) 2(1 2 )( )/ ( / )m n n b n b nne
          

 

Markov inequality and application of lemma 1.2 completes the proof of  

lemma1.3. 

From lemma 1.3, it is easy to see that x (∞) is 0(√n) in probability. Thus except on a 

set of small probability, R is greater than the sum of the first m + n - √n terms of  

 

      
1 2

1 2
, ,.... , , ,.....s

m

n
s s s s s  . 

R is of course less than or equal to the sum of all the terms. By the proof of lemma 1.2 

shows that with probability approaching one 

2 2

3 3( ) ( ) ( ) ( )m n m n m n m n
R

   

   
      (12) 

 

The number of pi’s greater than 

2

3( ) ( )m n m n

 

 
 is distributed as a  

Binomial  

2

3( ) ( )
,exp

m n m n
n

 

  
  

     
      

  w which has mean  hich3  

2 2

3 3( ) ( ) ( )
exp exp

m n m n m n
n b b

  

   
   

     
    
   
      

                            (13) 

Thus with probability approaching one, x (∞) is less than  a Binomial 

2

3( ) ( )
,exp

m n m n
n

 

  
  

      
      

  



10  Dr. Muthuramakrishnan and Mr. A. Martin 

random variable and greater than  

Binomial  

2

3( ) ( )
,exp

m n m n
n

 

  
  

      
      

 random variable.   

 

CONCLUSION: 

Since both of these distributions converge in law to a Poisson with mean b, the 

theorem is proved.That is when the threshold is large but the population is much 

larger the distribution of the number remaining uninfected in a large epidemic has 

approximately the Poisson form with mean b. 
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