
Current Development in Artificial Intelligence.
ISSN 0976-5832 Volume 2, Number 1 (2011), pp. 1-9
© International Research Publication House
http://www.irphouse.com

Real Time Implementation using Partial
Reconfiguration

S.S. Shriramwar1 and N.K. Choudhari2

1Priyadarshini College of Engineering, Nagpur University, India

E-mail: sshriramwar@yahoo.com

2Smt. Bhagwati Chaturvedi College of Engineering, Nagpur University, India
E-mail: drnitinchoudhari@gmail.com

Abstract

Dynamic Partial Reconfiguration (DPR) of FPGAs presents many
opportunities for application design flexibility, enabling tasks to dynamically
swap in and out of the FPGA without entire system interruption. In this paper,
a line follower robot for the white line as well as for black line was
implemented on Virtex-2 FPGA board. These modules were dynamically
reconfigured on Virtex-2 FPGA board in the run-time. This design includes
two modules one is static and the other is partially reconfigurable regions
(PRR) which is a dynamic region. The controllers were the static modules
used for controlling the flow of data to and from the reconfigurable modules to
the external world (host environment) through bus macros, whereas white line
and black line modules were designed as dynamic modules. Different
hardware modules were used such as sensors and actuators, all these modules
were interfaced with FPGA controller. The speed of motor was controlled
using pulse width modulation (PWM) using VHDL.

Keywords: Partial Reconfiguration, Field Programmable Gate Array (FPGA),
mobile robot, actuators, Sensor.

Introduction
The emergence of reconfigurable Field Programmable Gate Arrays (FPGA) has given
rise to a new platform of complete mobile robot control system. With FPGA devices,
it is possible to tailor the design to fit the requirements of applications (for example,
exploration and navigation functions for a robot). General-purpose computers can
provide acceptable performance when tasks are not too complex. A single processor
system cannot guarantee real-time response (particularly in the absence of

2 S.S. Shriramwar and N.K. Choudhari

considerable additional hardware), if the environment is dynamic or semi-dynamic.
An FPGA-based robotic system can be designed to handle tasks in parallel.
 Normally a mobile robot system includes several tasks, such as path planning,
obstacle avoidance, emergency stop, sensor signal processing, sensor manager for
sensor fusion, actuators, and actuator manager. Most robot systems are implementing
all these tasks in software. It would be a challenging job for a software engineer to
implement all the tasks under real-time constraints especially with computation-
intensive image information under dynamic environment. The expensive ASIC can
fulfill the speed criteria; however, it is a complicated and expensive procedure if a
slight change occurs. Recent attempts to find new ways to speed up computation take
advantage of the FPGA, since they offer the speed similar to an ASIC with a
flexibility equal to or even higher than a general processor. In order to increase the
robot’s robustness and flexibility with the real-time constraints, in this paper, we
propose a dynamically reconfigurable real-time embedded system platform by
integrating high-performance microprocessors with a reconfigurable FPGA to enable
a mobile robot system to adapt to dynamic environment on the fly with the minimum
loss of its performance and capabilities.
 Recent evolution in FPGA technology allows the designer to update/reconfigure
only a specific part of the internal structure of the FPGA at run-time using a technique
known as Partial Dynamic Reconfiguration (PDR). With PDR, it is possible to
implement dynamic systems that adapt to run-time needs of the application allowing
reuse and reconfiguration of hardware cores (IP blocks). This allows the FPGA to
remain operational without comprising the integrity of the applications running on
parts of the FPGA that do not undergo reconfiguration.

Design overview
Architecture of mobile robot
The top-level architecture of the prototype is shown in figure 1. It supports ADC to
sense the distance of the obstacle from vehicle with the help of GP2D12 sensor and
LCD to display distance of the vehicle from obstacle and relative speed of the
vehicle. Within the proposal of mobile robotics platform, the use of FPGA Controller,
with control software especially developed for the necessary applications is considered
using structured libraries to design, simulation, and verification with SIMULINK, we
convert the model to function prototyping using FPGA hardware.

Figure 1: Top level architecture of prototype.

 FPGA
 Controller

LCD
Display

Motion
Control

Sensor

 ADC
Converter

Real Time Implementation using Partial Reconfiguration 3

Interfacing the FPGA with ADC 0809
An A/D converter translates an analog signal into a digital value. An 8 channel, 8-bit
A/D input is available to read analog voltages between 0 to 5 Volts. Devices such as
an analog joystick or potentiometers can be connected to one of ADC channel and
converted digital output can be read and is sent back to the FPGA board to control the
speed of DC motor. The characteristics of an A/D converter include:

• Accuracy: expressed in the number of digits it produces per value
• Speed: expressed in maximum conversions per second (for example 500

conversions per second)
• Measurement range: expressed in volts

Interfacing the FPGA with L293D
The FPGA will process the PWM program and the output will be given to enable pin
of L293D which activate the L293 quadruple high current half H-Driver chip and
controls the speed of the motor.

LCD module
Recently, a number of projects use intelligent liquid crystal display (lcd) modules.
There ability to display not just numbers, but also letters, words and all type of
symbols makes them a good deal more versatile than the familiar 7-segment light
emitting diode (led) displays. The LCD module used in this design is a 2 line 16
characters per line FPGA module. This LCD module is available on CPLD board
itself.

Distance measurement sensor
The analog sensor Sharp GP2D12 simply returns a voltage level in relation to the
measured distance. In Figure 2, above, the relationship between digital sensor read-
out (raw data) and actual distance information can be seen. From this diagram it is
clear that the sensor does not return a value linear or proportional to the actual
distance, so some post-processing of the raw sensor value is necessary. The simplest
way of solving this problem is to use a lookup table which can be calibrated for each
individual sensor.

Figure 2: Analog output voltage vs distance to reflective objects.

4 S.S. Shriramwar and N.K. Choudhari

Functional description
A GP2D12 distance sensor, which is mounted on the vehicle model senses the obstacle
in the range of 10 cm to 80 cm and generate an analog output voltage as shown in
figure 3, which is nonlinear with respect to the distance. Hence a proper calibration
method is required. ADC 0809 then converts this analog voltage into 8 bit digital data.
As maximum output voltage from sensor is 2.55V, we set the Vref of ADC to 2.55V.
On the ADC0831 this will give a value of 0 to 255 for an input voltage of 0 to 2.55
volts. This gives us a resolution of 0.01 volts per step from the ADC. FPGA senses the
8-bit output of ADC and compare it with the data present in the synthesized registers
of FPGA for a fixed distance interval. When sensed data matches with data in FPGA,
FPGA transfers ASCII code for respective distance to be displayed on LCD module.
Thus LCD displays the distance of vehicle model from obstacle in a real time
continuously. A PWM signal is generated by inferring hardware in FPGA based on the
output from ADC. When vehicle model is at 80 cm from obstacle, this signal has more
ON time period. Hence DC motor in vehicle model gets more average power. We
decoded ADC output such that the speed of vehicle model will be 7 cm/sec at 80 cm
distance and then it will decrease by 1 cm/sec for decrease in distance by 10 cm and so
on. Thus at 10 cm distance of vehicle model from obstacle, the speed will be 0 cm/sec
i.e. vehicle will stop. Thus vehicle would not hit the obstacle. As this PWM signal
generated by FPGA cannot drive the DC motor of vehicle model, a L293D motor
driver IC is used. A PWM signal is applied to the enable pin of driver IC and DC
motor of vehicle model is connected to output1 and output2 pins of driver IC. A 270
KHZ clock is provided to ADC as well as FPGA because of its availability on FPGA
board. A higher clock can be used to improve the speed of operation of the design, as
ADC0809 can work up to 1280 KHZ and FPGA can even work on MHz range.

Synthesis results

Figure 3: Simulation result of ADC interface.

Figure 4: Simulation result of motor interface.

Real Time Implementation using Partial Reconfiguration 5

 The Figure 5 shows the snap Shot of Mobile Robot Prototype. After the
simulation and the synthesis process, the program has been implemented on the
FPGA board.

Figure 5: A snap Shot of Mobile Robot Prototype.

Partial reconfiguration
Partial Dynamic Reconfiguration is the capability to reconfigure specific areas of the
FPGA at run-time after its initial configuration. PDR is carried out to allow the FPGA
to adapt to changing hardware algorithms, improve fault tolerance and resource
utilization, to enhance performance or to reduce power consumption.Xilinx proposed
the initial PDR methodology in [8] and currently only Xilinx FPGAs support Partial
Dynamic Reconfiguration. Initial Xilinx PDR design flows recommended the use of
tri-state buffers for communication between dynamic and static parts of the FPGA [8].
They were not very effective leading to a new alternative in the form of predefined
routed macros generally termed as bus macros [9]. Bus macros are placed at the edge
of boundaries separating dynamic and/or static regions/modules. They allow
communication between the different regions of the FPGA. The limitation to this
approach was that although signals could pass through the reconfigurable area by use
of bus macros, however if a module was being reconfigured, the internal signal
route was also re-routed making the parts of the systems on either side of the module
isolated from each other. This problem was addressed later on. Virtex devices support
glitchless dynamic reconfiguration: If a configuration bit holds the same value before
and after reconfiguration, the resource controlled by that bit does not experience any
discontinuity in operation, with the exception of LUT RAM and SRL16 primitives in
Virtex-II/Pro devices. This limitation has been removed in the Virtex-4 family.

6 S.S. Shriramwar and N.K. Choudhari

Implementing designed prototype using partial dynamic
reconfiguration
Conceptually, the reconfigurable fabric of the system is divided in two areas, the static
area and the dynamically reconfigurable area. Hardware modules that remain
unchanged during the whole application execution are placed in the static area. The
dynamic area is time-shared between the dynamic hardware modules; they are loaded
as needed by the application running on the embedded CPU with the help of the run-
time management system. The hardware platform used for this work is a board with a
Xilinx XC2VP7 FPGA and 32 MB of external memory. The FPGA contains an
embedded PowerPC (PPC) 405 processor. The static area of the system contains the
following modules (more can be added if necessary):

• A memory interface unit; the external memory stores both the reconfiguration
data of the dynamic modules and the application-specific data.

• A reconfiguration control unit that performs the reconfigurations using the
Virtex-II Pro Internal Configuration Access Port (ICAP).

• Two I/O units: one to communicate with the modules in the dynamic area and
one to transfer data To/from external devices (for instance, a controlling
computer).

 As can be seen in the figure.6, the system is connected to an external Flash
memory (which stores the partial bit streams to carry out the reconfiguration) via a
Flash controller which provides read/write access to the external memory. The ICAP
module is present to read/write configuration data to/from the devices’ configuration
memory. An internal on-chip Block RAM can be utilized to store the recently read
configuration data (not shown in the figure). Reconfiguration of the dynamic region is
managed by a Reconfiguration Controller which can be either external or internal (self
configuration) to the FPGA. It is responsible for the partial reconfiguration bitstream
that must be loaded onto the reconfigurable modular region. However, self
configuration can be carried out through the internal ICAP parallel interface and
reduces reconfiguration time as compared to external reconfiguration. For this reason,
our reconfiguration controller is present inside the FPGA and communicates to the rest
of the system via the Processor Local Bus (PLB). Other peripherals are attached to a
slower On-Chip Peripheral Bus (OPB) via the PLB-OPB Bridge.

Figure 6: Conceptual model of complete system to carry out PDR.

Real Time Implementation using Partial Reconfiguration 7

Algorithm for Implementation
In this section we describe the algorithm for implementing the prototype on Virtex-II
Pro FPGA using Hardware Reconfiguration. The first step is to specify the base system
with help of the Xilinx EDK. VHDL descriptions of the system and the synthesized
peripherals are then exported to the Xilinx Integrated Synthesis Environment (ISE) [7]
for implementation. The results of this step may be reused for multiple projects;. The
next step is to add the static area part of the Bus Macro to the design, in the form of a
relatively placed and synthesized design, and connect it to the inputs/outputs of the
OPB Dock. The creation of this Bus Macro design is made in a different ISE project.
After translation, mapping and routing of the main design, we obtain the NCD file that
defines the basis of the system (NDC is an internal format used by ISE).
 After all designs have been assembled, we generate the partial and full
reconfiguration files. The full reconfiguration file is generated from the base system
design. The process of generating the partial configuration files depends on the layout
of the modules in the dynamic area. For modules that occupy whole columns, a partial
file is generated for each assembled design by the Xilinx bitstream generation tool
(bitgen) or by ModBitCreator, a JBits [7] program we developed. The base system
design is used as reference, so that the partial bitstreams created contain only the data
for the modified frames (the basic unit of reconfiguration). The ModBit Creator also
creates a partial bitstream that sets the range of columns spanned by the module to its
base state. For modules that share columns, a partial file is generated per assembled
design (having the base system design as the reference) by ModBit Creator. The partial
bitstream created by this program contains the configuration data for all the frames that
cover the range of columns occupied by the module. All partial reconfiguration files
have to be transformed into Module-based Partial Reconfiguration (MPR) files, which
are used by our run-time system to manage module information .These files are created
by MPRCreator, an application we developed for this purpose. In order to be
downloaded to the board, all MPR files are processed by the mfsgen tool , to create a
Xilinx Memory File System (MFS) I mage.

Figure 7: FPGA editor view of the difference-based design.

8 S.S. Shriramwar and N.K. Choudhari

Implementation
Initial budgeting using UCF constraint file, an ASCII file specifying constraints on the
logical design, three area groups were created in accordance with the guidelines in
pervious section.

1. AREA GROUP "AG U1" RANGE = SLICE X0Y159 : SLICE X47Y0
2. AREA GROUP "AG U2" RANGE = SLICE X48Y159 : SLICE X83Y0
3. AREA GROUP "AG U3" RANGE = SLICE X84Y159 : SLICE X91Y0

 Instances of the static, reconfigurable, and ICAP-JTAG wrapper modules were
assigned to the above area groups respectively. TBUFs, BRAMs, and MULTs were
also included in the ranges of the area groups. Also, all system level, FPGA pins, and
bus macro location constraints were assigned. Active Module Implementation Module
specific constraints such as DCM and PPC405 location constraints were added to the
constraint file created in the previous phase.
 To implement each module, the top-level and module netlists in NGC format and
the constraint file were used. Each active module was separately expanded into the
top-level design. It then mapped, placed, and routed. The implemented designs were
published as Physically Implemented Module (PIM) to a different directory to be used
in the next phase.
 Final Assembly: This phase constructed a complete design using the top-level
design files created during the initial budgeting phase, the top-level constraints file,
and the implemented modules published to the directory in the previous phase. The
final bitstream for the complete design was generated in this phase after running the
following commands:

1. ngdbuild -p xc2vp30®896-6 -uc <constraint file>.ucf -u -modular assemble -
pimpath ...n...nPims <top-level file>.ngc

2. map -pr b <top-level file>.ngd -o <top-level file> map.ncd <top-level file>.pcf
3. par -w <top-level file> map.ncd <top-level file>.ncd <top-level file>.pcf

Conclusions & Future work
In this paper we designed a prototype for obstacle detection application and
successfully realized a method for performing secure partial reconfiguration of FPGAs
by implementing a special this application using embedded processor cores. Under
software control and within a single FPGA, the configuration controller was able to
partially reconfigure an application system on the FPGA while the rest of device
maintained correct operation. By performing partial bitstream encryption and
authentication, this method improves the design security specifically for designs that
benefit from partial reconfiguration. It also provides the flexibility of using arbitrary
algorithms for authentication and encryption/decryption of partial bitstreams.
 Among the next steps of this development work are:

i. Designing other modules.
ii. Providing run-time support for applications running on a controlling

computer.
iii. Implementing these modules on Virtex-IV FPGA

Real Time Implementation using Partial Reconfiguration 9

References

[1] István Matijevics: Microcontrollers, Actuators and Sensors in Mobile Robots,
in Proceedings of 4th Serbian-Hungarian Joint Symposium on Intelligent
Systems (SISY 206) September 29-30, 2006, Subotica, Serbia.

[2] Volnie A.Pedroni. “Circuit Design with VHDL” .MIT Press, Cambridge,
Massachusetts, London , England.

[3] Prabhas Chongstitvatana. “A FPGA-based Behavioral Control System for a
Mobile Robot”. IEEE Asia-Pacific Conference on Circuits and Systems,
Thailand, 1998.

[4] Steve Guccione, D. Levi, and P. Sundararajan. JBits: Java based interface for
reconfigurable computing. In MAPLD’99, Maryland, September 1999.

[5] K. Sridharan and P. Rajesh Kumar. “Design and Development of an FPGA
based Robot”. www.springerlink.com. Berlin Heidelberg 2008 .

[6] Xilinx. Embedded Development Kit Documentation, 2004.
[7] “Two Flows for Partial Reconfiguration: Module Based or difference Based,”

in Xilinx Application Note XAPP290, Version 1.1, 2003.
[8] “Two Flows for Partial Reconfiguration: Module Based or Difference Based,”

in Xilinx Application Note XAPP290, Version 1.2, Sept. 2004. [Online].
Available: http://www.xilinx.com/bvdocs/appnotes/xapp290.pdf

[9] B. Blodget and C. Bobda and M. Huebner and A. Niyonkuru, “Partial and
dynamically reconfiguration of Xilinx Virtex-II FPGAs,” in FPL’04, 2004, pp.
801–810.

[10] P. Lysaght and B. Blodget and J. Mason and J. Young and B. Bridgford,
“Invited Paper: Enhanced Architectures, Design Methodologies and CAD
Tools for Dynamic Reconfiguration of Xilinx FPGAs,” in FPL’06, Madrid,
Spain, Aug. 2006.

	b.pdf
	International Journal of Networking and Computer Engineering
	
	Reza Malekian
	Chair and Head of Computer Department
	Azad University, Tonekabon Branch,
	Iran
	Prof. Aggelos K. Katsaggelos
	Dr. Marlien Herselman
	Dr. Shihab Jimaa
	 Editorial Board dri
	
	Prof. Hussain Al-Ahmad
	Prof. G.S. Tomar
	Prof. Safaa S. Mahmoud
	Dr. Nazanin Malekian
	Dr. S. Jeevananthan
	Dr. Ghulam Ali
	AIM AND SCOPE
	Submission of Manuscripts
	SUBSCRIPTION INFORMATION

	Analysis of Frequency Reuse and Throughput Enhancement in 1--20 WiMAX systems
	J. Jackson Juliet Roy and V. Vaidehi
	Suleiman Abu-Ein, Sayel M. Fayyad, Ghazi Al-Marahleh,
	Naser Al-Kloub and Mohammad Al-Hasan
	B. Ramesh, Member IEI and D. Manjula
	R. Deepa and K. Baskaran
	Md. Dulal Haque, Shaikh Enayet Ullah, Md. Mahbubar Rahman and A.F.M. Zainul Abadin
	Rakesh Kumar jha and Ajay Sharma
	J. Jackson Juliet Roy and V. Vaidehi
	M. Bheemalingaiah, M.M. Naidu, D. Sreenivasa Rao and G.Varaprasad

