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Abstract 
 

Evolutionary algorithms are stochastic search methods that mimic the 
metaphor of natural biological evolution. Evolutionary algorithms operate on a 
population of potential solutions applying the principal of survival of the 
fittest to produces better and better approximations to solutions. Moreover, 
Evolutionary computation can be integrated with artificial Neural Network to 
increase the performance at various levels; in result such neural network is 
called Evolutionary ANN. In this paper very important issue of neural network 
namely adjustment of connection weights for learning presented by Genetic 
algorithm over feed forward architecture. To see the performance of 
developed solution comparison has given with respect to well established 
method of learning called gradient decent method. A benchmark problem of 
classification, Parity2[26], Parity4 (XOR with 4 inputs), and two real world 
data problems like heart and Pima-India-diabetes, has taken to justify the 
experiment. Presented method is not only having very probability to achieve 
the global minima but also having very fast convergence. 
 
Keywords: Artificial neural network, Evolutionary algorithm, Gradient decent 
algorithm, Mean square error. 
 

 
Introduction 
An Artificial Neural Network (ANN) is composed of a large number of highly 
interconnected processing elements (neurons) working in unison to solve specific 
problems. ANNs, like people, learn by example. An ANN is configured for a specific 
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 Learning in artificial neural systems involves changes to the content and 
organization of a system’s knowledge, enabling it to improve it’s performance on a 
particular task or set of tasks. There are two types of training/learning used in neural 
networks, with different types of networks using different types of training. These are 
Supervised and Unsupervised training, of which supervised is the most common for 
feed forward architecture training modes. During the learning process global 
information may be required. The idea behind learning in Neural Network is that, the 
output depends only in the activation, which in turn depends on the values of the 
inputs and their respective weights. The goal of the training process is to obtain a 
desired output when certain inputs are given. Since the error is the difference between 
the actual and the desired output, the error depends on the weights, and we need to 
adjust the weights in order to minimize the error. 
 
 
Gradient descent Back-Propagation learning  
The supervised learning Paradigm include error-correction learning. An important 
issue concerning supervised learning is the problem of error convergence, i.e. the 
minimization of error between the desired and computed unit values. The aim is to 
determine a set of weights, which minimizes the error. One well-known method, 
which is common to many learning paradigms, is the gradient decent based learning. 
In the previous paper[x] described the benchmark problem of parity2 (xor with two 
inputs) for different learning factors for better convergence. A gradient descent based 
optimization algorithm such as back-propagation (BP) [6] can then be used to adjust 
connection weights in the ANN iteratively in order to minimize the error. The 
Gradient descent back-propagation algorithm [7] is a gradient descent method 
minimizing the mean square error between the actual and target output of multilayer 
perceptrons.  
 The initial weights influence the net reaches a global minima or only local mina of 
error and if so how rapidly it converges. To get the best result the initial weights are 
random numbers set between -0.5 and +0.5 or between -1 and +1. The initialization of 
weights (bias) can be done randomly. A high learning rate leads to rapid learning but 
weights are oscillate, while a lower learning rate leads to slower learning. A simple 
way is to increase the learning rate in order to improve performance and to decrease 
the learning rate in order to worsen the performance, or to double the learning rate 
until the error value worsens. The learning in the Back-Propagation uses the batch 
learning in which the weights are updated only after the entire set of training network 
has been presented to the network. Thus the weight update is only performed after 
every iteration. A Feed-forward Back-propagation network with one hidden layer of 
N nodes is used to train the benchmark problems like Parity2 [26] and parity4. Parity4 
has four inputs and one output the truth table is given in the table1.The most common 
mistake is in order to speed up the training process and to reduce the training errors, 
the neural networks with larger number of neurons than required. Such networks 
would perform very poorly for new patterns nor used for  training[10]. Gradient 
descent is relatively slow close to the minimum. A generalized number of hidden 
nodes are (2n+1), where n is the number of inputs. 
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 The Back-propagation [8], [9] networks tend to be slower to train than other types 
of networks and sometimes require thousands of epochs. When a reduced number of 
neurons are used the Error Back-propagation algorithm cannot converge to the 
required training error. BP has drawbacks due to its use of gradient descent [11, [12]. 
It often gets trapped in a local minimum of the error function and is incapable of 
finding a global minimum if the error function is multimodal and/or non-
differentiable. A detailed review of BP and other learning algorithms can be found in 
[13], [14], and [15]. 
 
 
Evolutionary Artificial Neural Network 
Evolutionary artificial neural networks (EANN’s) refer to a special class of artificial 
neural networks (ANN’s) in which evolution is another fundamental form of 
adaptation in addition to learning [2] – [5]. Evolutionary algorithms (EA’s) are used 
to perform various tasks, such as connection weight training, architecture design, 
learning rule adaptation, input feature selection, connection weight initialization, rule 
extraction from ANN’s, etc. One distinct feature of EANN’s is their adaptability to a 
dynamic environment. The two forms of adaptation, i.e., evolution and learning in 
EANN’s, make their adaptation to a dynamic environment much more effective and 
efficient. Evolution has been introduced into ANN’s at roughly three different levels: 
connection weights, architectures, and learning rules. The evolution of connection 
weights introduces an adaptive and global approach to training, especially in the 
reinforcement learning and recurrent network learning paradigm where gradient-based 
training algorithms often experience great difficulties. The evolution of architectures 
enables ANN’s to adapt their topologies to different tasks without human intervention 
and thus provides an approach to automatic ANN design as both ANN connection 
weights and structures can be evolved. The fitness function is shown in Fig1(b). 

 

 
 

Figure 1(b): fitness function 
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Evolutionary Connection weights 
Most training algorithms, such as BP. and conjugate gradient algorithms are based on 
gradient descent. There have been some successful applications of BP in various areas 
.One way to overcome gradient-descent-based training algorithms’ shortcomings is to 
adopt EANN’s, i.e., to formulate the training process as the evolution of connection 
weights in the environment determined by the architecture and the learning task.  
EA’s can be used effectively in the evolution to find a near-optimal set of connection 
weights globally without computing gradient information. .The aim is to find a near-
optimal set of connection weights globally for an ANN with a fixed architecture using 
EA’s. Comparisons between the evolutionary approach and conventional training 
algorithms, such as BP, will be made over Parity4 (XOR), two real time data set like 
heart deices, Pima-India-Diabetes data sets classification problem. 
 
Evolution of Connection weights using GA 
% initialization of population 
1. sz = total weights in architecture; 
2. For  i = 1: popsize; 
3.     pop(i)=sz number of random number; 
4.   End 
 
% offspring population creation 
5.   For j=1: popsize/2; 
6.     pickup two parents randomly through uniform distribution; 
7.     cp=cross over position defined by randomly pickup any active node position; 
8.    To create offspring, exchange all incoming weights to selected nodes cp between 
parents;               
9.            For  each offspring; 
10.,                 place of mutation, mp = randomly selected active node; 
11.                      For all incoming weights w to selected node mp; 
12.                                  w=w+N (0, 1); 
13.                          End 
14.               End 
15.  End 
 
16. Offspring population, off_pop available; 
17. npop= [pop; off_pop]; 
 
% Define fitness of each solution, 
18. For i=1:2*popsize; 
19.      wt=npop(i); 
20.      apply wt to ANN architecture to get error value; 
21.      define fitness as fit(i)=1/error; 
22.   End 
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% Tournament selection  
23. For  r =1:2*popsize; 
24.   pick P number of Challengers randomly, where P = 10% of popsize; 
25.   arrange the tournament w.r.t fitness between rth solution and selected P 
challengers.; 
26.   define score of tournament for rth solution 
27. End 
28.   Arrange score of all solution in ascending order; 
29.   sp=pick up the best half score position ; 
30. select next generation solution as solution corresponding to position sp; 
31. repeat the process from step 5 until terminating criteria does not satisfy 
32. final solution=solution with maximum fitness in last generation. 
 
 
Experimental setup 
A feed forward architecture with fully interconnected network designed .transfer 
function in the active node is taken as unimodel sigmoid function. Initial random 
weights are upgraded by gradient decent and genetic algorithm respectively. Various 
learning rates have applied to capture performance possibilities from gradient decent. 
To increase the learning and efficiency ‘bias’ in architecture and ‘momentum’ in 
learning have also included when learning given by gradient decent. Population size 
for parity4  in GA taken as 20 and 10 independent trails have given to get the 
generalize behavior. Condition of terminating criteria is taken as fixed iteration and it 
is equal to 1000 for GA. Because GA works with a population at time where as 
gradient decent takes only one solution in each iteration hence to nullify the effect , 
more number of iterations have given to gradient decent learning and it is taken as 
20*1000 and run it for different network sizes. Population size for real time data 
classifiers like heart deices and pima-india-diabetes in GA taken as 100 and 200 and 
run it for different network sizes. 
 
Performance shown by gradient decent learning 
With the defined size of architecture, bias has applied with +1 input for hidden layer 
and output layer. For parity4 (xor with 4 inputs and 1 output):Various learning rate 
taken from 0.1 to 0.9 with the increment of 0.1 along with momentum constant as 
0.1.shown in the Fig(2.0) and various momentum rate taken from 0.1 to 0.9 with the 
increment of 0.1 along with learning constant as 0.9 in Fig(3) for a network size of [4 
4 1]. The general criteria for maximum number of hidden nodes in  gradient algorithm 
is (2n+1), where n is the number of inputs.  The performance has also shown in Fig(4) 
for architecture size [4 9 1]  with size [4 5 1]. Mean square error obtained after 20,000 
iterations has shown in Table 1. 
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Figure 2(a): with network size[4 4 1] Figure 2(b): with network size[4 5 1] 
 

Figure 2: Results of Gradient based learning with different learning rates (0.1 -0.9) 
keeping momentum rate at 0.1 on different network sizes 

 

Figure 3(a): with network size[4 4 1] Figure 3(b): with network size[4 5 1] 
 

Figure 3: Results of Gradient based learning with different momentum rates keeping 
learning rate at 0.9 on different network sizes 

 

Figure 4(a): Different learning rate (0.1-
0.9) with momentum is constant at 0.1 

Figure 4(b): Different momentum rate 
(0.1-0.9) with learning is constant at 0.1 

 
Figure 4: Results of Gradient based learning with network size[4 9 1] 
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Table 1: performance shown by gradient decent 
 

Learning rate     MSE([4 4 1])  MSE([4 5 1]) MSE([4 9 1]) 
0.1 5.0013e-001 5.0017e-001 5.0023e-001 
0.2 5.0006e-001 5.0008e-001 5.0005e-001 
0.3 3.9440e-001 4.1291e-001 2.8197e-001 
0.4 2.8178e-001 1.8251e-001 1.2974e-001 
0.5 2.8247e-001 1.3025e-001 1.2729e-001 
0.6 2.8148e-001 1.2823e-001 1.2650e-001 
0.7 2.8047e-001 1.2770e-001 1.2612e-001 
0.8 2.7983e-001 1.2828e-001 1.2594e-001 
0.9 2.7976e-001 1.2886e-001 5.4989e-003 

 
 
 Results shown in Table1  indicate the difficulties associated with gradient decent 
based learning rule. Performance is very poor with the architecture size [4 4 1] for all 
learning rates. In fact learning failed for this case. This is   indication of stuckness in 
local minima. For architecture [4 5 1] there is an improvement in reduction of mean 
square error, and  with higher value of learning rate equal to 0.9, best performance has 
obtained at momentum rate equal to 0.1 with early convergence as shown in fig3(b). 
Convergence characteristics for both cases have shown in Fig(2) and Fig(3). The 
performance of gradient algorithm is further improved using the network size [4 9 1], 
with higher value of learning rate(0.9) and lower momentum factor of 0.1 the 
convergence is very fast and best reduced mean square error values compare to the 
network size [4 5 1] as shown in Fig4(b). 
 
Performance shown by GA based learning  
With the defined size of network architectures bias has applied with +1 input for 
hidden layer and output layer. For parity4 the developed form of GA results for ten 
different runs are shown in the Fig(5).Mean square error obtained after 1000 iterations 
has shown in in Table 2. 

 
 

Figure 5(a): network size of [4 4 1] Figure 5(a): network size of [4 5 1] 
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Figure 5(c): network size of [4 9 1] 
 

Figure 5: MSE performance by GA for different trails 
 
 

Table 2: performance shown by GA for different trails 
 

Trail No. MSE([4 4 1]) MSE([4 5 1]) MSE([4 9 1]) 
1 9.0084e-003 4.6115e-006 7.0489e-015 
2 2.1219e-026 9.4020e-028 5.0245e-037 
3 2.0416e-014 9.6960e-032 7.8364e-029 
4 1.3406e-003 6.0631e-037 8.8598e-033 
5 3.2323e-022 6.9969e-049 3.6283e-038 
6 4.6980e-044 8.3418e-033 9.0794e-049 
7 2.2361e-047 7.7779e-028 7.3994e-047 
8 2.3923e-022 7.4838e-018 9.2225e-032 
9 1.8086e-041 8.3266e-030 8.3001e-035 
10 7.1106e-055 7.3821e-047 6.4088e-049 

 
 
 Convergence characteristics performance of developed form of GA for weight 
adjustment shown in Fig(5). For all the network cases it is very clear that very fast 
convergence with high reliability can be achieve by GA (expect for the two trail 
numbers one and four in [4 4 1] network and trail number one in [4 5 1] network) as 
shown in Table 2. But when compared to parity2 (xor2) [26] the convergence for 
parity4 takes more iterations as shown in Fig.5. 
 
Benchmark Real data classification Problems 
Using the feed-forward defined size of architecture, bias has applied with +1 input for 
hidden layer and output layer. For real data classification data problems,  two types 
data sets has considered i) SPECT Heart data set ii) Pima-India-Diabetes data set 
problems. The data available for these problems had been uploaded into the UCI 
repository in 1990. 
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Pima Indians Diabetes 
The Pima Indians Diabetes database data refers to a medical problem, in which the 
diagnosis was carried out on several patients to investigate whether a patient shows 
signs of diabetes. This dataset composed of 8 attributes plus a binary class value to 
show the signs of diabetes which corresponds to the target classification value and 
includes 768 instances shown in Table3.  

 
Table 3: Set of features considered for PIMA Indian Diabetes problem. 

 
Number Attribute 

1 Number of times pregnant 
2 Plasma glucose concentration a 2 hours in an oral glucose tolerance test 
3 Diastolic blood pressure(mm Hg) 
4 Triceps skin fold thickness(mm) 
5 2-Hour serum insulin (mm U/ml) 
6 Body mass indesx, with weight expressed in Kg and height expressed in 

m(Kg/m2) 
7 Diabetes pedigree function 
8 Age (years) 
9 Class variable (0 or 1) 

 
 Results of this data sets and different parameters are shown in  Table4 and Pima 
India diabet achieved  good percentage of accuracy and consistency. 
 
 
SPECT Heart Data 
For Single Proton Emission Computed Tomography (SPECT) Heart deceases data 
set, only 13 attributes are used as input parameters to  classify the problem and a total 
of 267 instances. The target value has stored at 14th parameter in the data set. These 
data sets are normalized before applying to the network  fixed feed-forward 
architecture, one hidden layer of N number of nodes and one output node. The Table4 
summaries the parameters and results are achieved up to good percentage of accuracy 
and consistency. 

 
Table 4: performance shown by GA for different real time datasets. 

 
Parameter Pima India Diabet SPECT Heart Data 
Number of inputs 09 09 13 13 
Number of outputs 01 01 01 01 
Number of hidden nodes  02 03 02 03 
Max. Iteration taken 102 61 120 77 
Number of Training patterns 500 500 200 200 
Number of Test patterns 268 268 67 67 
Percentage of Accuracy  81.5 81.5 88.6 88.6 
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 Performance of  developed form of GA for weight adjustment real world 
classification problems are shown in Table4, which shows the results of 2 and 3 
hidden nodes with  a population of 50. Pima India Diabet problem takes 500 data sets 
for Training and 268 data sets for test pattern. This classification achieved the very 
good consistence with minimum mean square error of 7.2346e-002 for different runs 
and the average percentage of accuracy is 81.5. Similarly for SPECT Heart Data 
classification problem 200 datasets are used for training and 67datasets are used as 
test pattern with the same 2 and 3 hidden nodes networks with a population of 50. 
This problem achieved the excellent consistency with minimum mean square error of 
4.1722e-002 for different runs and the average percentage of accuracy is 88.6.   
 
Comparison of the literature 

 
Table 5: Shows the caparison of accuracy of the literature 

 
Method Pima India Diabet SPECT Heart Data
Neuro genetic approach 75.5% -- 
ADAP Algorithm 76% -- 
EPNet 77.6% -- 
ANN Development by means of GP 
with Graph Codification 

-- 81.11 

Proposed Method 81.5% 88.6 
 
 
 In the above Table 5 shows the developed evolutionary genetic algorithm has 
given the excellent performance  on accuracy and less mean square error compare to 
the ADAP, Neuro genetic approach and EP Net algorithm. 
 
 
Conclusion 
Determination of optimal weights in ANN in the phase of learning has obtained by 
using the concept of evolutionary genetic algorithm. Because of direct form 
realization in defining the solution of weights there is no extra means required to 
represent the solution in population. Proposed method of weights adjustment has first 
compared with the gradient decent based learning and it has shown proposed method 
outperform at every level for parity4 classification problem. Even with lesser number 
of hidden nodes where gradient decent method is completely fail for learning, and it 
has been shown excellent convergence as well as accuracy also. Second, it has been 
applied on real time data sets classification problems has shown, the proposed method 
outperform when compared with some literature works. Defined solution of learning 
has generalized characteristics from application point of view and having simplicity in 
implementation. 
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