
Current Development in Artificial Intelligence.
ISSN 0976-5832 Volume 3, Number 1 (2012), pp. 9-21
© International Research Publication House
http://www.irphouse.com

Evolutionary ANN Learning Algorithm on
Benchmark and Real Time Dataset Classification

Problems

1G.V.R. Sagar and 2S. Venkata Chalam

1Assoc. Professor, G.P.R. Engg. College, Kurnool, A.P., India
E-mail: nusagar@gmail.com

2Principal, A.C.E. Engg. College, Ghatkesar, A.P., India
E-mail: sv_chalam2003@yahoo.com

Abstract

Evolutionary algorithms are stochastic search methods that mimic the
metaphor of natural biological evolution. Evolutionary algorithms operate on a
population of potential solutions applying the principal of survival of the
fittest to produces better and better approximations to solutions. Moreover,
Evolutionary computation can be integrated with artificial Neural Network to
increase the performance at various levels; in result such neural network is
called Evolutionary ANN. In this paper very important issue of neural network
namely adjustment of connection weights for learning presented by Genetic
algorithm over feed forward architecture. To see the performance of
developed solution comparison has given with respect to well established
method of learning called gradient decent method. A benchmark problem of
classification, Parity2[26], Parity4 (XOR with 4 inputs), and two real world
data problems like heart and Pima-India-diabetes, has taken to justify the
experiment. Presented method is not only having very probability to achieve
the global minima but also having very fast convergence.

Keywords: Artificial neural network, Evolutionary algorithm, Gradient decent
algorithm, Mean square error.

Introduction
An Artificial Neural Network (ANN) is composed of a large number of highly
interconnected processing elements (neurons) working in unison to solve specific
problems. ANNs, like people, learn by example. An ANN is configured for a specific

10

application, such as patte
process. A trained neural
information it has been
(architecture), ANN can b
allow signals to travel on
(loops) i.e. the output of a
(b)Recurrent Networks ca
loops in the network

F

G.V.R. Sagar and S. Ve

ern recognition or data classification, thro
network can be thought of as an "expert" in

n given to analyze. Based on the conn
be grouped into two categories: (a) Feed For
ne-way only, from input to output. There

any layer does not affect that same layer as sh
an have signals traveling in both directions

Figure 1: Feed forward architecture

enkata Chalam

ugh a learning
the category of

nection pattern
rward Networks
is no feedback

hown in Fig.(1).
by introducing

Evolutionary ANN Learning Algorithm 11

 Learning in artificial neural systems involves changes to the content and
organization of a system’s knowledge, enabling it to improve it’s performance on a
particular task or set of tasks. There are two types of training/learning used in neural
networks, with different types of networks using different types of training. These are
Supervised and Unsupervised training, of which supervised is the most common for
feed forward architecture training modes. During the learning process global
information may be required. The idea behind learning in Neural Network is that, the
output depends only in the activation, which in turn depends on the values of the
inputs and their respective weights. The goal of the training process is to obtain a
desired output when certain inputs are given. Since the error is the difference between
the actual and the desired output, the error depends on the weights, and we need to
adjust the weights in order to minimize the error.

Gradient descent Back-Propagation learning
The supervised learning Paradigm include error-correction learning. An important
issue concerning supervised learning is the problem of error convergence, i.e. the
minimization of error between the desired and computed unit values. The aim is to
determine a set of weights, which minimizes the error. One well-known method,
which is common to many learning paradigms, is the gradient decent based learning.
In the previous paper[x] described the benchmark problem of parity2 (xor with two
inputs) for different learning factors for better convergence. A gradient descent based
optimization algorithm such as back-propagation (BP) [6] can then be used to adjust
connection weights in the ANN iteratively in order to minimize the error. The
Gradient descent back-propagation algorithm [7] is a gradient descent method
minimizing the mean square error between the actual and target output of multilayer
perceptrons.
 The initial weights influence the net reaches a global minima or only local mina of
error and if so how rapidly it converges. To get the best result the initial weights are
random numbers set between -0.5 and +0.5 or between -1 and +1. The initialization of
weights (bias) can be done randomly. A high learning rate leads to rapid learning but
weights are oscillate, while a lower learning rate leads to slower learning. A simple
way is to increase the learning rate in order to improve performance and to decrease
the learning rate in order to worsen the performance, or to double the learning rate
until the error value worsens. The learning in the Back-Propagation uses the batch
learning in which the weights are updated only after the entire set of training network
has been presented to the network. Thus the weight update is only performed after
every iteration. A Feed-forward Back-propagation network with one hidden layer of
N nodes is used to train the benchmark problems like Parity2 [26] and parity4. Parity4
has four inputs and one output the truth table is given in the table1.The most common
mistake is in order to speed up the training process and to reduce the training errors,
the neural networks with larger number of neurons than required. Such networks
would perform very poorly for new patterns nor used for training[10]. Gradient
descent is relatively slow close to the minimum. A generalized number of hidden
nodes are (2n+1), where n is the number of inputs.

12 G.V.R. Sagar and S. Venkata Chalam

 The Back-propagation [8], [9] networks tend to be slower to train than other types
of networks and sometimes require thousands of epochs. When a reduced number of
neurons are used the Error Back-propagation algorithm cannot converge to the
required training error. BP has drawbacks due to its use of gradient descent [11, [12].
It often gets trapped in a local minimum of the error function and is incapable of
finding a global minimum if the error function is multimodal and/or non-
differentiable. A detailed review of BP and other learning algorithms can be found in
[13], [14], and [15].

Evolutionary Artificial Neural Network
Evolutionary artificial neural networks (EANN’s) refer to a special class of artificial
neural networks (ANN’s) in which evolution is another fundamental form of
adaptation in addition to learning [2] – [5]. Evolutionary algorithms (EA’s) are used
to perform various tasks, such as connection weight training, architecture design,
learning rule adaptation, input feature selection, connection weight initialization, rule
extraction from ANN’s, etc. One distinct feature of EANN’s is their adaptability to a
dynamic environment. The two forms of adaptation, i.e., evolution and learning in
EANN’s, make their adaptation to a dynamic environment much more effective and
efficient. Evolution has been introduced into ANN’s at roughly three different levels:
connection weights, architectures, and learning rules. The evolution of connection
weights introduces an adaptive and global approach to training, especially in the
reinforcement learning and recurrent network learning paradigm where gradient-based
training algorithms often experience great difficulties. The evolution of architectures
enables ANN’s to adapt their topologies to different tasks without human intervention
and thus provides an approach to automatic ANN design as both ANN connection
weights and structures can be evolved. The fitness function is shown in Fig1(b).

Figure 1(b): fitness function

Evolutionary ANN Learning Algorithm 13

Evolutionary Connection weights
Most training algorithms, such as BP. and conjugate gradient algorithms are based on
gradient descent. There have been some successful applications of BP in various areas
.One way to overcome gradient-descent-based training algorithms’ shortcomings is to
adopt EANN’s, i.e., to formulate the training process as the evolution of connection
weights in the environment determined by the architecture and the learning task.
EA’s can be used effectively in the evolution to find a near-optimal set of connection
weights globally without computing gradient information. .The aim is to find a near-
optimal set of connection weights globally for an ANN with a fixed architecture using
EA’s. Comparisons between the evolutionary approach and conventional training
algorithms, such as BP, will be made over Parity4 (XOR), two real time data set like
heart deices, Pima-India-Diabetes data sets classification problem.

Evolution of Connection weights using GA
% initialization of population
1. sz = total weights in architecture;
2. For i = 1: popsize;
3. pop(i)=sz number of random number;
4. End

% offspring population creation
5. For j=1: popsize/2;
6. pickup two parents randomly through uniform distribution;
7. cp=cross over position defined by randomly pickup any active node position;
8. To create offspring, exchange all incoming weights to selected nodes cp between
parents;
9. For each offspring;
10., place of mutation, mp = randomly selected active node;
11. For all incoming weights w to selected node mp;
12. w=w+N (0, 1);
13. End
14. End
15. End

16. Offspring population, off_pop available;
17. npop= [pop; off_pop];

% Define fitness of each solution,
18. For i=1:2*popsize;
19. wt=npop(i);
20. apply wt to ANN architecture to get error value;
21. define fitness as fit(i)=1/error;
22. End

14 G.V.R. Sagar and S. Venkata Chalam

% Tournament selection
23. For r =1:2*popsize;
24. pick P number of Challengers randomly, where P = 10% of popsize;
25. arrange the tournament w.r.t fitness between rth solution and selected P
challengers.;
26. define score of tournament for rth solution
27. End
28. Arrange score of all solution in ascending order;
29. sp=pick up the best half score position ;
30. select next generation solution as solution corresponding to position sp;
31. repeat the process from step 5 until terminating criteria does not satisfy
32. final solution=solution with maximum fitness in last generation.

Experimental setup
A feed forward architecture with fully interconnected network designed .transfer
function in the active node is taken as unimodel sigmoid function. Initial random
weights are upgraded by gradient decent and genetic algorithm respectively. Various
learning rates have applied to capture performance possibilities from gradient decent.
To increase the learning and efficiency ‘bias’ in architecture and ‘momentum’ in
learning have also included when learning given by gradient decent. Population size
for parity4 in GA taken as 20 and 10 independent trails have given to get the
generalize behavior. Condition of terminating criteria is taken as fixed iteration and it
is equal to 1000 for GA. Because GA works with a population at time where as
gradient decent takes only one solution in each iteration hence to nullify the effect ,
more number of iterations have given to gradient decent learning and it is taken as
20*1000 and run it for different network sizes. Population size for real time data
classifiers like heart deices and pima-india-diabetes in GA taken as 100 and 200 and
run it for different network sizes.

Performance shown by gradient decent learning
With the defined size of architecture, bias has applied with +1 input for hidden layer
and output layer. For parity4 (xor with 4 inputs and 1 output):Various learning rate
taken from 0.1 to 0.9 with the increment of 0.1 along with momentum constant as
0.1.shown in the Fig(2.0) and various momentum rate taken from 0.1 to 0.9 with the
increment of 0.1 along with learning constant as 0.9 in Fig(3) for a network size of [4
4 1]. The general criteria for maximum number of hidden nodes in gradient algorithm
is (2n+1), where n is the number of inputs. The performance has also shown in Fig(4)
for architecture size [4 9 1] with size [4 5 1]. Mean square error obtained after 20,000
iterations has shown in Table 1.

Evolutionary ANN Learning Algorithm 15

Figure 2(a): with network size[4 4 1] Figure 2(b): with network size[4 5 1]

Figure 2: Results of Gradient based learning with different learning rates (0.1 -0.9)
keeping momentum rate at 0.1 on different network sizes

Figure 3(a): with network size[4 4 1] Figure 3(b): with network size[4 5 1]

Figure 3: Results of Gradient based learning with different momentum rates keeping
learning rate at 0.9 on different network sizes

Figure 4(a): Different learning rate (0.1-
0.9) with momentum is constant at 0.1

Figure 4(b): Different momentum rate
(0.1-0.9) with learning is constant at 0.1

Figure 4: Results of Gradient based learning with network size[4 9 1]

16 G.V.R. Sagar and S. Venkata Chalam

Table 1: performance shown by gradient decent

Learning rate MSE([4 4 1]) MSE([4 5 1]) MSE([4 9 1])
0.1 5.0013e-001 5.0017e-001 5.0023e-001
0.2 5.0006e-001 5.0008e-001 5.0005e-001
0.3 3.9440e-001 4.1291e-001 2.8197e-001
0.4 2.8178e-001 1.8251e-001 1.2974e-001
0.5 2.8247e-001 1.3025e-001 1.2729e-001
0.6 2.8148e-001 1.2823e-001 1.2650e-001
0.7 2.8047e-001 1.2770e-001 1.2612e-001
0.8 2.7983e-001 1.2828e-001 1.2594e-001
0.9 2.7976e-001 1.2886e-001 5.4989e-003

 Results shown in Table1 indicate the difficulties associated with gradient decent
based learning rule. Performance is very poor with the architecture size [4 4 1] for all
learning rates. In fact learning failed for this case. This is indication of stuckness in
local minima. For architecture [4 5 1] there is an improvement in reduction of mean
square error, and with higher value of learning rate equal to 0.9, best performance has
obtained at momentum rate equal to 0.1 with early convergence as shown in fig3(b).
Convergence characteristics for both cases have shown in Fig(2) and Fig(3). The
performance of gradient algorithm is further improved using the network size [4 9 1],
with higher value of learning rate(0.9) and lower momentum factor of 0.1 the
convergence is very fast and best reduced mean square error values compare to the
network size [4 5 1] as shown in Fig4(b).

Performance shown by GA based learning
With the defined size of network architectures bias has applied with +1 input for
hidden layer and output layer. For parity4 the developed form of GA results for ten
different runs are shown in the Fig(5).Mean square error obtained after 1000 iterations
has shown in in Table 2.

Figure 5(a): network size of [4 4 1] Figure 5(a): network size of [4 5 1]

Evolutionary ANN Learning Algorithm 17

Figure 5(c): network size of [4 9 1]

Figure 5: MSE performance by GA for different trails

Table 2: performance shown by GA for different trails

Trail No. MSE([4 4 1]) MSE([4 5 1]) MSE([4 9 1])
1 9.0084e-003 4.6115e-006 7.0489e-015
2 2.1219e-026 9.4020e-028 5.0245e-037
3 2.0416e-014 9.6960e-032 7.8364e-029
4 1.3406e-003 6.0631e-037 8.8598e-033
5 3.2323e-022 6.9969e-049 3.6283e-038
6 4.6980e-044 8.3418e-033 9.0794e-049
7 2.2361e-047 7.7779e-028 7.3994e-047
8 2.3923e-022 7.4838e-018 9.2225e-032
9 1.8086e-041 8.3266e-030 8.3001e-035
10 7.1106e-055 7.3821e-047 6.4088e-049

 Convergence characteristics performance of developed form of GA for weight
adjustment shown in Fig(5). For all the network cases it is very clear that very fast
convergence with high reliability can be achieve by GA (expect for the two trail
numbers one and four in [4 4 1] network and trail number one in [4 5 1] network) as
shown in Table 2. But when compared to parity2 (xor2) [26] the convergence for
parity4 takes more iterations as shown in Fig.5.

Benchmark Real data classification Problems
Using the feed-forward defined size of architecture, bias has applied with +1 input for
hidden layer and output layer. For real data classification data problems, two types
data sets has considered i) SPECT Heart data set ii) Pima-India-Diabetes data set
problems. The data available for these problems had been uploaded into the UCI
repository in 1990.

18 G.V.R. Sagar and S. Venkata Chalam

Pima Indians Diabetes
The Pima Indians Diabetes database data refers to a medical problem, in which the
diagnosis was carried out on several patients to investigate whether a patient shows
signs of diabetes. This dataset composed of 8 attributes plus a binary class value to
show the signs of diabetes which corresponds to the target classification value and
includes 768 instances shown in Table3.

Table 3: Set of features considered for PIMA Indian Diabetes problem.

Number Attribute

1 Number of times pregnant
2 Plasma glucose concentration a 2 hours in an oral glucose tolerance test
3 Diastolic blood pressure(mm Hg)
4 Triceps skin fold thickness(mm)
5 2-Hour serum insulin (mm U/ml)
6 Body mass indesx, with weight expressed in Kg and height expressed in

m(Kg/m2)
7 Diabetes pedigree function
8 Age (years)
9 Class variable (0 or 1)

 Results of this data sets and different parameters are shown in Table4 and Pima
India diabet achieved good percentage of accuracy and consistency.

SPECT Heart Data
For Single Proton Emission Computed Tomography (SPECT) Heart deceases data
set, only 13 attributes are used as input parameters to classify the problem and a total
of 267 instances. The target value has stored at 14th parameter in the data set. These
data sets are normalized before applying to the network fixed feed-forward
architecture, one hidden layer of N number of nodes and one output node. The Table4
summaries the parameters and results are achieved up to good percentage of accuracy
and consistency.

Table 4: performance shown by GA for different real time datasets.

Parameter Pima India Diabet SPECT Heart Data
Number of inputs 09 09 13 13
Number of outputs 01 01 01 01
Number of hidden nodes 02 03 02 03
Max. Iteration taken 102 61 120 77
Number of Training patterns 500 500 200 200
Number of Test patterns 268 268 67 67
Percentage of Accuracy 81.5 81.5 88.6 88.6

Evolutionary ANN Learning Algorithm 19

 Performance of developed form of GA for weight adjustment real world
classification problems are shown in Table4, which shows the results of 2 and 3
hidden nodes with a population of 50. Pima India Diabet problem takes 500 data sets
for Training and 268 data sets for test pattern. This classification achieved the very
good consistence with minimum mean square error of 7.2346e-002 for different runs
and the average percentage of accuracy is 81.5. Similarly for SPECT Heart Data
classification problem 200 datasets are used for training and 67datasets are used as
test pattern with the same 2 and 3 hidden nodes networks with a population of 50.
This problem achieved the excellent consistency with minimum mean square error of
4.1722e-002 for different runs and the average percentage of accuracy is 88.6.

Comparison of the literature

Table 5: Shows the caparison of accuracy of the literature

Method Pima India Diabet SPECT Heart Data
Neuro genetic approach 75.5% --
ADAP Algorithm 76% --
EPNet 77.6% --
ANN Development by means of GP
with Graph Codification

-- 81.11

Proposed Method 81.5% 88.6

 In the above Table 5 shows the developed evolutionary genetic algorithm has
given the excellent performance on accuracy and less mean square error compare to
the ADAP, Neuro genetic approach and EP Net algorithm.

Conclusion
Determination of optimal weights in ANN in the phase of learning has obtained by
using the concept of evolutionary genetic algorithm. Because of direct form
realization in defining the solution of weights there is no extra means required to
represent the solution in population. Proposed method of weights adjustment has first
compared with the gradient decent based learning and it has shown proposed method
outperform at every level for parity4 classification problem. Even with lesser number
of hidden nodes where gradient decent method is completely fail for learning, and it
has been shown excellent convergence as well as accuracy also. Second, it has been
applied on real time data sets classification problems has shown, the proposed method
outperform when compared with some literature works. Defined solution of learning
has generalized characteristics from application point of view and having simplicity in
implementation.

20 G.V.R. Sagar and S. Venkata Chalam

References

[1] X. Yao, “Evolution of connectionist networks,” in Preprints Int. Symp. AI,
Reasoning & Creativity, Queensland, Australia, Griffith Univ., pp. 49–52.
1991.

[2] “A review of evolutionary artificial neural networks,” Int. J. Intell. Syst., vol.
8, no. 4, pp. 539–567, 1993.

[3] “Evolutionary artificial neural networks,” Int. J. Neural Syst., vol. 4, no. 3, pp.
203–222, 1993.

[4] T. Dartnall, Ed. Dordrecht, “The evolution of connectionist networks,” in
Artificial Intelligence and Creativity, The Netherlands: Kluwer, pp. 233–243,
1994.

[5] A. Kent and J. G. Williams, “Evolutionary artificial neural networks,” in
Encyclopedia of Computer Science and Technology, vol. 33, , Eds. New York:
Marcel Dekker, pp. 137–170, 1995.

[6] G. E. Hinton, “Connectionist learning procedures,” Artificial Intell., vol. 40,
no. 1–3, pp. 185–234, Sept. 1989

[7] Rumelhart D. E., Hinton G. E., Williams R. J. “Learning representations by
back propagating errors”, .Nature, 323, 533-536, 1986.

[8] Rumclhart D. E., Hinton G. E., Williams R. J.: “ Learning errors” , Nature, Vol.
323, pp. 533-536, 1986.

[9] Wcrobs P. J,: ” Back-propagation: Past and Future”, Proc. Neural Networks,
San Diego, CA, 1, 343-354, 1988.

[10] Wilamowski B. M,: “ Neural Network Architectures and Learning Algorithms:
How not to be Frustrated with Neural Networks, IEEE Industrial Electronics
Magazine “, Vol. 3 No. 4, pp. 56-63, Dec. 2009.

[11] R. S. Sutton, “Two problems with back-propagation and other steepest-descent
learning procedures for networks,” in Proc. 8th Annual Conf. Cognitive
Science Society. Hillsdale, NJ: Erlbaum, pp. 823–831, 1986

[12] D. Whitley, T. Starkweather, and C. Bogart, “Genetic algorithms and neural
networks: Optimizing connections and connectivity,” Parallel Comput., vol. 14,
no. 3, pp. 347–361, 1990

[13] J. Hertz, A. Krogh, and R. Palmer, Introduction to the Theory of Neural
Computation. Reading, MA: Addison-Wesley, 1991.

[14] D. R. Hush and B. G. Horne, “Progress in supervised neural networks,” IEEE
Signal Processing Mag., vol. 10, pp. 8–39, Jan. 1993.

[15] Y. Chauvin and D. E. Rumelhart, Eds., Back-propagation: Theory,
Architectures, and Applications. Hillsdale, NJ: Erlbaum, 1995.

[16] J. Hertz, A. Krogh, and R. Palmer, Introduction to the Theory of Neural
Computation. Reading, MA: Addison-Wesley, 1991.

[17] D. R. Hush and B. G. Horne, “Progress in supervised neural networks,” IEEE
Signal Processing Mag., vol. 10, pp. 8–39, Jan. 1993.

[18] Y. Chauvin and D. E. Rumelhart, Eds., Backpropagation: Theory,
Architectures, and Applications. Hillsdale, NJ: Erlbaum, 1995.

Evolutionary ANN Learning Algorithm 21

[19] M. F. Møller, “A scaled conjugate gradient algorithm for fast supervised
learning,” Neural Networks, vol. 6, no. 4, pp. 525–533, 1993.

[20] K. J. Lang, A. H. Waibel, and G. E. Hinton, “A time-delay neural network
architecture for isolated word recognition,” Neural Networks, vol. 3, no. 1, pp.
33–43, 1990.

[21] S. Knerr, L. Personnaz, and G. Dreyfus, “Handwritten digit recognition by
neural networks with single-layer training,” IEEE Trans. Neural Networks, vol.
3, pp. 962–968, Nov. 1992.

[22] S. S. Fels and G. E. Hinton, “Glove-talk: A neural network interface between a
data-glove and a speech synthesizer,” IEEE Trans. Neural Networks, vol. 4, pp.
2–8, Jan. 1993.

[23] D. Whitley, T. Starkweather, and C. Bogart, “Genetic algorithms and neural
networks: Optimizing connections and connectivity,” Parallel Comput., vol. 14,
no. 3, pp. 347–361, 1990.

[24] D. Whitley, “The GENITOR algorithm and selective pressure: Why rank-based
allocation of reproductive trials is best,” in Proc. 3rd Int. Conf. Genetic
Algorithms and Their Applications, J. D. Schaffer, Ed. San Mateo, CA:
Morgan Kaufmann, pp. 116–121, 1989.

[25] P. Zhang, Y. Sankai, and M. Ohta, “Hybrid adaptive learning control of
nonlinear system,” in Proc. 1995 American Control Conf. Part 4 (of 6), pp.
2744–2748, 1995.

[26] G.V.R.Sagar, Dr. S. Venkatachalam, & Mannoj kumar sing” Evolutionary
Algorithm for Optimal Connection Weights in Artificial Neural Networks” in
International Journal of engineering(IJE), vol:5, issue:5, pp.333-340, 2011.

