Generalizataion of Bertrand's conjecture

Mr Dhritiman Niyogi

Abstract

In 1845 Joseph Bertrand conjectured that for every integer n>1 there is always atleast one prime p between n and 2n [1].

Mathematically there exists atleast one prime p such that n<p<2n.

With the help of this conjecture we are going to generalize this

In this article we are going to show that for any prime p there exists at least n primes between p and 2^n*p .

Keywords: 1. 1.Bertrand, 2.Conjecture, 3. Prime, 4. Generalization

INTRODUCTION

Bertrand had enunciated that there exists at least one prime between n and 2*n, more specifically there exists so between p and 2*p.

We are going to be more specific and showing the generalized version of Bertrand's Conjecture.

BODY OF THE WORK

There is at least a prime between p and 2*p. So, there is also one between 2*p and 4*p. So between p and 4*p there are atleast two . More over between 4*p and 8*p there is another. So between p and 8*p there are atleast three. Proceeding in this way we get there are atleast n so between p and 2^n*p. We are going to prove it in a more rigorous way , by the method of induction. It is true for n=1 , because there is atleast one between p and 2*p. Let this be true for n=m. So there are atleast m primes between p and 2^m*p. But according to Bertrand there is atleast one between 2^m*p and 2^(m+1)*p . So there are atleast m+1 primes between p and 2^(m+1)*p. So it is true for all n. QED.

Conclusion

We conclude that there are atleast n primes between p and 2ⁿ*p.

Appendix

We conclude that there are atleast n primes between p and 2ⁿ*p.

Acknowledgement

I am indebted to Dr. Kashinath Niyogi and Mousumi Niyogi for constant inspiration

References

- [1] https://www.cantorsparadise.com/bertrand's postulate
- [2] Elementary Number Theory , David M. Burton , Sixth edition , page no :-352.
- [3] heory of Numbers , Pundir and Pundir , page number 5.