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Abstract 
 

The aim of this paper is to apply a statistical technique; namely, the maximum 
likelihood estimation procedure to a simulated human nerve cell data. A 
generalized linear model with a Binomial distribution and logistic link 
function based on likelihood is set down for this purpose. This is an 
encouraging step to learn how the nerve cell is functioning to carry out a 
particular task. This conceptual model is basically consists of two main 
underlying processes, the Summation function(s) which represents a linear 
summation of the input effects on the output, the other is called a Threshold 
and Recovery function to present the spontaneous behavior of the cell and then 
reflects an intrinsic properties of the cell. The data consists of two inputs, 

2121 ...,,2,1;.,...,2,1;, njniXX ji  , representing the effect of any two 
neurons on a single neighboring neuron (output) in additional to that the time 
elapsed since the neuron last fired t  is also presented which then allow us to 
include a recovery process of the cell to the analysis. Since the traditional 
goodness of fit tests cannot be used for a generalized linear model with a 
Binomial distribution and logistic link function, we will not rely only on the 
deviance table in choosing among the models but also to test the selected 
model by introducing an empirical goodness of fit procedure based on 
theoretical and empirical probabilities obtained for given values of the linear 
predictor. The study is also aiming to compare the likelihood approach to 
other existing statistical techniques such as the point process technique. 
Simulated data set have been analyzed with the proposed procedures. The 
analysis showed that the likelihood, compared to the other approach, is more 
appropriate to describe the cell reactions and to reflect many of its main 
features. 
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1. Introduction 
The analysis of Input–Output data of the nerve cell may provide a basis for 
understanding the operations that the central nervous system uses to carry out a 
particular task. Recently after the development of high speed computers, the 
investigation of the behavior of small network of nerve cells has become a very reach 
area of research which attracted many scientists worldwide. One used technique in 
analyzing the nerve behavior is the point process and more recently many generalized 
linear models based on maximum likelihood have been introduced and developed. 
This paper will investigate one such model. One target is to apply the likelihood 
procedure to fit a generalized linear model with Binomial distribution and logistic link 
function to a nerve cell data consisting of two inputs and a single output along with an 
additional input data allowing the inclusion of a recovery process which reflecting the 
intrinsic properties of the cell. The traditional square root of the cross-intensity 
function as time domain of point process technique is also obtained. The use of both 
maximum likelihood (via, the estimated summation function) and stochastic point 
process will allow us to compare results obtained by both approaches. 
 
 
2.1 An Analytic Model: 
Let us consider, the firings of a cluster of three neighboring neurons 

2X,1X andY which are described by the counting measures )t(2X,(t)1X  andY t( ) , 

respectively. Now, suppose we are interested in the firing of neuronY and that the 
neurons 1X and 2X fired at times 1 and 2 , respectively.  Let  1τt1a   and 

 2τt2a  represent the effect of the neurons 1X and 2X on the potential at time t of 

the neuronY , respectively. The quantities (.)1a  and  (.)2a  will be called the 

summation functions, which represent the effects of the neurons 1X and 2X  (two 

inputs) on the firing of a third neuron Y  (an output), and describe the course that the 
potential would follow after a current impulse. The linearity assumption implies that 
the effects of current pulses at different times are additive, see Brillinger and Segundo 
(1979) and Brillinger (1988). Let  tγ  denote the time elapsed at time t  since the 
neuron Y  last fired. At this point, let us assume that the only effect on the output is 
the effect of the inputs occurring after the previous output, and then the membrane 
potential  tU  at its trigger zone may be represented as 

 .                           (2.1.1) 
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 The neuron Y  tends to fire when the potential at its trigger zone exceeds an extant 
level called threshold. Now, let  tθ  denote the threshold potential level at the trigger 
zone at time t  and assume that it has the form 

                                                                  (2.1.2) 
 
with  tε  the noise, which includes contributions of unmeasured neurons that 

influence the firing of neuron , and  tθ  some function of t , representing the 
underlying form of the threshold at time t . 
 There is some experimental evidence validating the Gaussian assumption for 
 tε  given in Holden (1976). One simple form for  tθ  is the constant form, 

                                                                               (2.1.3). 
 
 This leads to the assumption of an absolute constant threshold level. 
Furthermore, let Ω(t)  represent the history of a particular process, i.e., those 
variables determined up to and including time t that are necessary to describe the 
evolution of the process. For the processes u)-(t1X  and )(2X ut  , we may write 

 .                                   (2.1.4). 
 
 It will be convenient for computational purposes, specifically in determining the 
maximum likelihood estimates via standard statistical packages, to record the values 
of the point processes only at discrete times ....) 2h, h, 0,(tt  . If a small 
sampling interval of length h  is selected, then the process will take only the values 
0 or 1. Thus, for a sampling interval of length h , with h  suitably small the point 
process Y(t)  can be replaced by a discrete 0-1 valued seriesYt , such that 

  
 
 Discrete approximation of equation (4.1.1) may be written as 

                              (2.1.5) 
 
 Similarly, equations (2.1.2 and 2.1.3) may appear in their discrete approximation 
form as, 

                                                                          (2.1.6) 

                                                                                   (2.1.7) 
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 Let tP  be the conditional probability of the neuron Y  firing, given the history of 
the process, then we may have 
    Ω  1  Y  PrP ttt   

     Ω   h tt,in r  somefor  rθ crosses  r UPr t  

    Ω   θ   UPr ttt             Pr tttt ΩεθU    

    Ω   θ  U ε Pr tttt
  tΩ θ    UF

tt
                          (2.1.8) 

 
where  .F denotes the cumulative distribution function of the random error tε . Now, 
we may write 
   ttt PΩ  1Y Pr   and   ttt P1Ω   0Y Pr                                  (2.1.9) 
 
 for the probabilities of “success” (or firing) and “failure” (or not firing), 
respectively. Therefore the response variable tY  will follow the Bernoulli distribution 
with parameter tP , i.e.,  

   1 , 0y ;  y1)P(1yPyYPr t
t

t
t

ttt  .                                         (2.1.10) 
 
 The likelihood function that need to be maximized is given by 
 ty1

t
t

ty
t0 )P(1Pl                                                                (2.1.11) 

 
 It is more convenient to add a recovery term, Vt , to U t , to allow for spontaneous 
firings of the neuron and to describe the intrinsic membrane properties of the cell. We 
shall see later that, Vt  plays a further role in our model. It seems natural to see if a 
polynomial form for Vt  is adequate. 

 










1ζ    γ;                       0        

1ζ    γ; 1)ζ(γ iθ 
  = V

1t

1t
i

1t
k

1=it                                            (2.1.12) 

 
where  t  denotes the time elapsed since the time of the last output spike and  1  
denotes the minimum of the output inter-spike intervals. The recovery function is 
forced to be zero for 1ζ γ 1t   since there will be no data for smaller values of t . 
The potential at the trigger zone is reset immediately after the neuron fires and then 
may rise steadily again on its own without any influence by other neurons. This 
behavior suggests adding the recovery function term, tV . The idea of introducing a 
recovery function to the likelihood model was first suggested by Brillinger and 
Segundo (1979), which then developed by Yousef (1995). One way to investigate the 
relationship between the input and the output is through the linear combination, 
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




ti
k

1i
tij

k

1j
tjt η ;   )2(Xβ )1(X  η                             (2.1.13) 

 
where jβ , j k) ..., 3, 2, 1,j(   are the unknown parameters to be estimated. To 

consider Pt  as a linear combination of the form given in equation (2.1.13) above 
would inevitably contradict probability laws, which require 1tP0   and therefore a 
convenient transformation that maps the unit interval into the whole real line ) , (   
is then needed. This leads to the idea of a link function, see McCullagh and Nelder 
(1992) for more details. Two particular link functions for the binomial models are the 
Probit and Logit link functions, the Probit link function is given by, 
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



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k
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 The   .  is the normal cumulative distribution function. The other possible link 
functions is the logistic function, 
         ηexp1 /  ηexp  tP tt   
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2.2 The Bernoulli Log Likelihood 
The log likelihood function of the response variable, Yt  may be written as, 

   ty1
t

t
ty

t )P(1P elogy ;P l   
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 In order to express this form of the log-likelihood as a function of the unknown 
parameters jβ  and  k...,1,2,jj  , we have, 
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 This could be differentiated with respect to the s' and s'  to obtain the required 
estimates of the unknown parameters. 
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3. Likelihood Applications to Simulated Multiple Input and Single 
Output Data 
We demonstrate the application of the maximum likelihood approach with a 
simulated set of data where we have one observed (spike train) input and one 
“unobservable” input, and one observed output, where the observed spike trains are 
replace by zero one valued series taking a sampling interval h of 1msec. The 
simulation was done by using a conductance based neuronal model using an 
excitatory input. To increase the output firing rate in order to match comparable 
experimental data, a continuous input representing a population of “unobservable” 
inputs has been used to stimulate the cell (Halliday, 1994). These “unobservable” 
inputs are used as a stimulus to the cell to increase its firing rate as well as to mimic 
the behavior of real cells. For more details see Halliday (1994). Thus the likelihood 
approach can be used to analyze a set of simulated data which contains along with the 
observed input and output spike train data, a continuous input zt  which is discretized 
over small intervals of length 1 msec. This has been scaled such that zt  takes on 
values between 0 and 1 and represents the “unobservable” inputs (Halliday, 1994). 
 The simulated data set demonstrated here consisted of a 0-1 valued series of 
approximately 60000 points for each of the observed input and output, along with 
60000 points for the “unobservable” inputs. The membrane potential on the trigger 
zone of the cell at any given time t  may be given in its approximate discrete form by 

                                           (3.1.1) 
 
where  t  is the time elapsed at time t  since the time of the last output spike, the two 

sets of coefficients  au ,  cw  represent the summation and carry-over effect 
functions for the observed input, respectively, whereas the two sets of coefficients 
 bu ,  dw  represent the summation and carry-over effect functions for the 
“unobservable” input, respectively. The numbers of spikes observed were 2398 and 
2991 for the observed input and output, respectively. Fig.3.1.1a and Fig.3.1.2a 
represent the two estimated summation functions,  au  and  bu  for the observed 

and “unobservable” inputs respectively, and suggest that, while the summation 
function for the observed inputs reveals an excitatory effect lasting about 26 msec. 
The summation function for the “unobservable” inputs shows longer excitatory effects 
lasting about 34 msec. The “unobservable” inputs also seem to have larger effects 
than the observed inputs as can be seen both from the reduction in deviance (Table 
3.1.1) when the two summation functions are fitted separately, and from the fact that 
the estimated coefficients,  bu  for the “unobservable” summation function are much 
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more statistically significant at any given lag than the estimated coefficients,  au  for 
the observed summation function. Carry-over effects for the observed as well as for 
the “unobservable” inputs are present. Fig.3.1.1b represents the estimated carry-over 
effect function for the observed inputs and suggests excitatory effects lasting from 
about 16 to 27 msec. The estimated carry-over effect function for the “unobservable” 
inputs as given in Fig.3.1.2b suggests excitatory effects lasting from about 18 to 25 
msec. But each of the two carry-over effect functions has a relatively small effect 
compared to their corresponding summation functions, as can be seen both from the 
comparatively small reduction in deviance from models with only summation 
functions to models with both summation and carry-over effect functions, and from 
the fact that the parameters of the two summation functions tend to be much more 
statistically significant than those of the corresponding carry-over effect functions. 
The threshold and recovery functions are well-estimated up to about 42 msec as 
shown in Fig.3.1.1c and suggest that the probability of an output spike is small up to 
about 20 msec, but it then increases rapidly and the chance of an output spike 
becomes quite large after about 30 msec. 
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Fig.3.1.1 a) Estimated summation function. b) Estimated carry-over effect function.c) 
Estimated recovery (lower curve) and threshold (upper solid line) functions. 
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Fig.3.1.2 a) Estimated summation function for the “unobservable” input. b) Estimated 
carry-over effect function for the “unobservable” input. c) The goodness of fit plot for 
the full model. 
 
 
 The deviance table given in Table.3.1.1 illustrates the sequential fitting of a set of 
successively more complex models in the most complete situation available to us; 
namely one where “unobservable“ inputs can be taken into consideration. The 
unobservable inputs explain more of the variability than either the summation 
function or the recovery function when fitted alone; although each of them is 
sufficiently informative to be worth fitting. This is a feature of the way in which the 
data have been simulated. 
 The second is that fitting all five components reduces the deviance from 20111 
(the initial model) to 6708; a reduction of about 67% and the best we have so far been 
able to achieve. The goodness of fit test (Fig.3.1.2c) corresponding to the final model 
reveals that the fit of the model is very satisfactory. It is possible to use values of the 
linear predictor much larger than we have been able to in previous data sets because 
more input information was available to us in this case. This leads to circumstances 
where the probability of an output spike is very large. The third is to note some of the 
various effects of adding the recovery function to a previous model. Adding it to the 
null model reduces the deviance by 4581. Adding it to the “unobservable” inputs 
reduces the deviance by only 176. Adding it to the summation function reduces the 
deviance by 4103. This requires careful interpretation. Evidently the information 
contained in the recovery function is largely orthogonal to that contained in the 
summation function because the two reductions in deviance, 4581 and 4103, are quite 
similar. However the recovery function contains almost no extra information to that 
contained in the “unobservable” inputs, as the additional reduction in deviance is very 
small. Evidently the recovery function “explains” part of the effects of the 
“unobservable” inputs if these latter are not (or cannot be) modeled. We shall need to 
be very careful therefore not to give the recovery function a physiological 
interpretation which may not be meaningful. It seems therefore in general that, unless 
all inputs are modeled, the recovery function will contain some input information. The 
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square root of the estimated cross-intensity function given in Fig.3.1.3b indicates an 
excitatory effect of an input lasting about 5 msec only. This duration is very short 
compared with the 26 msec duration of an excitatory effect suggested by the 
summation function for the observed inputs given in Fig.3.1.2a. The square root of the 
cross-intensity function seems to underestimate the underlying excitatory effects of a 
synaptic input and provides little of the information available in the full likelihood 
model. Fig.3.1.3a gives the estimated cross-intensity function. The residual deviance 
for this model is 19720; a reduction of only 391 from the null model, providing still 
further evidence that the cross-intensity function in general has very poor explanatory 
power. The goodness of fit plot for a model containing only the cross-intensity 
function (shown in Fig.3.1.3c) indicates that the fit is a very poor one compared with 
that for the five components model shown in Fig.3.1.2c. This can be seen both from 
the relatively small values of the predicted probabilities ( ( ) .P   0 2 ). 

 
Table.3.1.1 Deviance of all considered models. 

 
Model Deviance 
Recovery Function 15530 
(Summation Function)1 
Observed Inputs 

17669 

(Summation Function)2 
Unobserved Inputs 

12875 

(Summation Fun.)1  + (COE)1 17223 
(Summation Fun.)1 + Recovery Fun. 13566 
(Summation Fun.)2 + Recovery Fun. 12699 
(Summation Fun.)2  + (COE)2 12704 
(Summation Fun.)1 + (Summation Fun.)2 8897 
(Summation Fun.)1 + Recovery Fun. + (COE)1 17223 
(Summation Fun.)2 + (COE)2 + Recovery Fun. 12632 
(Summation Fun.)1 + (COE)1 + 
(Summation Fun.) + (COE)2 

7331 

(Summation Function)1 + (COE)1 + 
(Summation Function)2 +(COE)2  + 
Recovery Function 

6708 

 
 

4. Conclusion 
The approach shows great flexibility. The recovery (and threshold) functions, when 
all inputs can be measured, represent intrinsic properties of the neurone and no 
analogous measure is available using the traditional stochastic point process 
techniques. The linear summation of the effects of the input spike train on the 
membrane potential have been further separated into the effects of input spikes 
occurring at times after the time of the last output spike and the effects of input spikes 
occurring at times prior to the time of the previous output spike. These two types of 
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input effect are measured by the summation function and its corresponding carry-over 
effect function respectively. 

 

 

 

 
 

Fig.3.1.3 a) The cross-intensity function estimated via likelihood. b) The square root 
of the cross-intensity function estimated via the point process approach. The dotted 
lines in a) and b) give   two standard error limits for the cross-intensity functions 
plotted about zero in (a) and about the square root of estimated output mean rate in 
(b). c) The goodness of fit plot corresponds to the model given in a). 
 
 
 The analysis suggests that the square root of the cross intensity function as a time 
domain measure of the degree of associations between two processes usually 
underestimates the underlying effects of a synaptic input and it may further produce 
results that contradict the way in which the data have been simulated. The summation 
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function, by contrast, provides an alternative measure which seems to be more 
informative and reliable in terms of reduction in deviance. Also it seems to be more 
consistent with the way in which the data are simulated. Unlike the cross-intensity 
approach, the likelihood procedure also allows for continuous “unobservable” inputs 
to be involved in the analyses, and both summation and carry-over effect functions for 
the “unobservable” inputs can be estimated. 
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