Common Fixed Point Theorems in Menger Spaces

K.P.R. Sastry¹, G.A. Naidu², P.V.S. Prasad³ and S.S.A. Sastri⁴

 ¹8-28-8/1, Tamil Street, Chinna Waltair, Visakhapatnam-530 017, India E-mail: kprsastry@hotmail.com
 ^{2,3}Dept. of Mathematics, Andhra University, Visakhapatnam-530 003, India E-mail: drgolivean@yahoo.com, pvsprasad10@yahoo.in
 ⁴Dept. of Basic Science and Humanities, Coastal Institute of Technology and Management, Narapam, Vizianagaram- 535 183, India E-mail: sambharasas@yahoo.co.in

Abstract

In this paper Theorem 3.1 of Kubiaczyk and Sushil Sharma [5] is shown to hold even under weaker hypothesis (Theorem 2.2) and we obtain a fixed point theorem (Theorem 2.3) involving occasionally weakly compatible maps and also prove a coincidence point theorem (Theorem 2.4) for a pair of self maps under certain conditions. Examples are provided to show that the hypothesis in Theorems 2.3 and 2.4 can not be further weakend.

Keywords: common fixed point, compatible maps, weakly compatible maps, occasionally weakly compatible maps.

Mathematical subject classification (2000): 47H10, 54H25

Introduction

In this paper, we show that Theorem 3.1 of Kubiaczyk and Sushil Sharma [5] holds even if some hypothesis is dropped.

Definition 1.1: [7] A function $F: R \rightarrow [0,1]$ is called a distribution function if

- 1. F is non-decreasing,
- 2. *F* is left continuous,
- 3. $\inf_{x \in \mathbb{R}} F(x) = 0$ and $\sup_{x \in \mathbb{R}} F(x) = 1$

Definition 1.2: [7] Let X be a non-empty set and $F: X \times X \to \mathfrak{D}$ (The set of distribution functions). For, $p, q \in X$, we denote the image of the pair (p, q) by $F_{p,q}$ which is a distribution function so that $F_{p,q}(x) \in [0,1]$, for every real x.

Suppose *F* satisfies: 1. $F_{p,q}(x) = H(t)$ *if and only if* p = q2. $F_{p,q}(0) = 0$ 3. $F_{p,q}(x) = F_{q,p}(x)$ 4. If $F_{p,q}(x) = 1$ and $F_{q,r}(y) = 1$ then $F_{p,r}(x + y) = 1$ where $p, q, r \in X$.

Then (X, F) is called a probabilistic metric space.

Definition 1.3: [7] A triangular norm $t : [0,1] \times [0,1] \rightarrow [0,1]$ is a function satisfying the following conditions

- 1. $t(\alpha, 1) = \alpha \quad \forall \alpha \in [0, 1]$
- 2. $t(\alpha, \beta) = t(\beta, \alpha) \quad \forall \alpha, \beta \in [0, 1]$
- 3. $t(\gamma, \delta) \ge t(\alpha, \beta) \forall \alpha, \beta, \gamma, \delta \in [0, 1]$ with $\gamma \ge \alpha$ and $\delta \ge \beta$
- 4. $t(t(\alpha,\beta),\gamma) = t(\alpha,t(\beta,\gamma)) \ \forall \ \alpha,\beta,\gamma \in [0,1]$

Definition 1.4: [7] A Menger probabilistic metric space (X, F, t) is an ordered triad, where t is a t-norm and (X, F) is probabilistic metric space satisfies the following: $F_{x,z}(r+s) \ge t(F_{x,y}(r), F_{y,z}(s)) \forall x, y, z \in X \text{ and } r, s \ge 0.$

Definition 1.5: [4] Two self mappings f and g of a probabilistic semi-metric space (X, F) are said to be Occasionally weakly compatible (owc) iff there is a point x in X which is a coincidence point of f and g at which f and g commute.

Definition 1.6: [6] Let (X, F, t) is a Menger space with the continuous T-norm t. A sequence $\{p_n\}$ in X is said to be convergent to a point $p \in X$ if for every $\varepsilon > 0$ and $\lambda \in (0, 1)$, there exists an integer $N = N(\varepsilon, \lambda)$ such that $p_n \in U_p(\varepsilon, \lambda)$ for all $n \ge N$, or equivalently, $F_{p,p_n}(\varepsilon) > 1 - \lambda$, for all $n \ge N$.

We write $p_n \rightarrow p$ as $n \rightarrow \infty$ or $\lim_{n \rightarrow \infty} p_n = p$

Definition 1.7: [2] Let (X, F, t) be as Menger space such that the T-norm. t is continuous and S. T be mappings from X into itself. Then S and T are said to be compatible if $\lim_{n\to\infty} F_{STx_n,TSx_n}(x) = 1$ for all x > 0, whenever $\{x_n\}$ is a sequence in X such that $\lim_{n\to\infty} Sx_n = \lim_{n\to\infty} T x_n = z$ for some $z \in X$.

Definition 1.8: [3] Two self mappings S and T are said to be weakly compatible if they commute at their coincidence points if Tu = Su for some $u \in X$ then STu = TSu.

Definition 1.9: [1] Let S and T be two self mappings of a Menger space (X, F, t). We say that S and T satisfy the property (E.A) if there exists a sequence $\{x_n\}$ in X

 $\lim_{n\to\infty} S x_n = \lim_{n\to\infty} T x_n = z$ for some $z \in X$.

Main Results

The following Theorem is proved in [5].

Theorem 2.1 ([5], Theorem 3.1): Let (X, F, t) be a Menger space with $t(x, y) = \{x, y\} \forall x, y \in [0,1]$ and S and T be weakly compatible mappings of X into itself such that S and T satisfy the property (E.A), there exists a number $k \in (0,1)$ such that $\sum_{x \in [0,1]} \sum_{x \in [0,1]$

 $F_{Tu,Tv}(kx) \geq \min\{F_{Su,Sv}(x), F_{Su,Tu}(x), F_{Sv,Tv}(x), F_{Sv,Tu}(x), F_{Su,Tv}(x)\}$

for all $u, v \in X$,

 $T(X) \subset S(X).$

If S(X) or T(X) be a closed subset of X, then S and T have a unique common fixed point.

It can be shown that Theorem 2.1 holds even when condition (iii) is dropped. This is the essence of the following theorem.

Theorem 2.2: Let (X, F, t) be a Menger space with $t(x, y) = \{x, y\} \forall x, y \in [0,1]$, S and T be weakly compatible mappings of X into itself such that

- 1. S and T satisfy the property (E.A)
- 2. there exists a number $k \in (0,1)$ such that

$$F_{Tu,Tv}(kx) \ge \min\{F_{Su,Sv}(x), F_{Su,Tu}(x), F_{Sv,Tv}(x), F_{Sv,Tu}(x), F_{Su,Tv}(x)\}$$

for all $u, v \in X$ and for x > 0.

If S(X) be a closed subset of X, then S and T have a unique common fixed point.

Proof: Since S and T satisfy the property (E.A), there exists a sequence $\{x_n\}$ in X satisfying $\lim_{n\to\infty} S x_n = \lim_{n\to\infty} T x_n = z$ for some $z \in X$

Suppose that S(X) is closed.

Then $\lim_{n\to\infty} Sx_n = Sa$ for some $a \in X$, also $\lim_{n\to\infty} Tx_n = Sa$. By condition (ii), for x > 0, we have $F_{Tx_n,Ta}(kx) \ge \min \{ F_{Sx_n,Sa}(x), F_{Sx_n,Tx_n}(x), F_{Sa,Ta}(x), F_{Sa,Tx_n}(x), F_{Sx_n,Ta}(x) \}$ Letting $\to \infty$, we get $F_{Sa,Ta}(kx) \ge F_{Sa,Ta}(x) \ge F_{Sa,Ta}(kx)$

$$\stackrel{\bullet}{\bullet} F_{Sa,Ta}(t) = F_{Sa,Ta}(x) \forall t \in [kx,x] \text{ for } x > 0.$$

Similarly, for any $t \in [k^2 x, kx]$, $F_{Sa,Ta}(t) = F_{Sa,Ta}(kx) = F_{Sa,Ta}(x)$

In general, we can prove that $F_{sa,Ta}(t) = F_{Sa,Ta}(x) \forall t \in [k^n x, x]$ Or equivalently, $F_{sa,Ta}(t) = F_{Sa,Ta}(x) \quad \forall t \in \left[x, \frac{x}{k^n}\right] \text{ for } n = 1,2,3 \dots$ Hence

$$F_{Sa,Ta}(x) = 1 \quad \forall x > 0$$

$$\therefore Ta = Sa.$$

Since S and T are weakly compatible STa = TSa. $\therefore TTa = TSa = STa = SSa$

We prove that Ta is a common fixed point of T and S. Consider, for x > 0, $F_{Ta,TTa}(kx) \ge \min \{F_{Sa,STa}(x), F_{Sa,Ta}(x), F_{STa,TTa}(x), F_{STa,Ta}(t), F_{Sa,TTa}(x)\}$ $= F_{Ta,TTa}(x)$ Hence $F_{Ta,TTa}(kx) \ge F_{Ta,TTa}(x)$. So that $F_{Ta,TTa}(t) = F_{Ta,TTa}(x) \forall t \in [kx, x]$. Consequently, $F_{Ta,TTa}(t) = 1 \forall t > 0$. $\therefore Ta = TTa$ Hence TTa = Ta and STa = TTa = Tai.e. Ta is common fixed point for S and T. Uniqueness of the common fixed point follows easily.

Theorem 2.3: Let (X, F, t) be a Menger space with $t(x, y) = \min\{x, y\}$ for all $x, y \in [0,1]$, S and T be occasionally weakly compatible maps of X satisfying there exists a number $k \in (0,1)$ such that

$$F_{Tu,Tv}(kx) \ge \min\{F_{Su,Sv}(x), F_{Su,Tu}(x), F_{Sv,Tv}(x), F_{Sv,Tu}(x), F_{Su,Tv}(x)\}$$

for all $u, v \in X$.

Then S and T have a unique common fixed point.

Proof: Since S, T are occasionally weakly compatible maps there exists $a \in X$ such that Sa = Ta and STa = TSa.

Suppose Sa = Ta = w and Sb = Tb = w' be two points of coincidence, then by (i), we have

$$F_{Tu,Tv}(kx) \ge \min\{F_{Su,Sv}(x), F_{Su,Tu}(x), F_{Sv,Tv}(x), F_{Sv,Tu}(x), F_{Su,Tv}(x)\}$$

$$\Rightarrow F_{w,w'}(kx) = F_{Ta,Tb}(kx) \ge F_{Ta,Tb}(x)$$

$$\Rightarrow F_{w,w'}(kx) \ge 1$$

$$\Rightarrow w = w'$$

Since S, T are occasionally weakly compatible and have unique point of coincidence, then have w is a unique common fixed point of S and T.

Theorem 2.4: Let (X, F, t) be a Menger space with $t(x, y) = \min \{x, y\}$ for all $x, y \in [0,1]$, S and T be self mappings of X into itself such that

1. S and T satisfy the property (E.A)

2. there exist a number $k \in (0,1)$ such that $F_{Tu,Tv}(kx) \ge \min\{F_{Su,Sv}(x), F_{Su,Tu}(x), F_{Sv,Tv}(x), F_{Sv,Tu}(x), F_{Su,Tv}(x)\}$ for all $u, v \in X$

If S(X) be a closed subset of X, then S and T have a coincidence point.

Proof: Since S and T satisfy the property (E.A) there exist a sequence $\{x_n\}$ in X satisfying $\lim_{n\to\infty} Sx_n = \lim_{n\to\infty} T x_n = z$ for some $z \in X$. Suppose that S(X) is closed. Then $\lim_{n\to\infty} Sx_n = Sa$ for some $a \in X$, also $\lim_{n\to\infty} Tx_n = Sa$. By taking $u = x_n$ and v = a in condition (5.13.2), we get $F_{Tx_n,Ta}(kx) \ge \min \{F_{Sx_n,Sa}(x), F_{Sx_n,Tx_n}(x), F_{Sa,Ta}(x), F_{Sa,Tx_n}(x), F_{Sx_n,Ta}(x)\}$

On letting
$$n \to \infty$$
, we get
 $F_{Sa,Ta}(kx) \ge F_{Sa,Ta}(x) \ge F_{Sa,Ta}(kx)$
 $\therefore F_{Sa,Ta}(t) = F_{Sa,Ta}(x) \forall t \in [kx,x] for x > 0$

For any $t \in [k^2 x, kx]$, $F_{Sa,Ta}(t) = F_{Sa,Ta}(x)$

In general we can prove that

$$F_{sa,Ta}(t) = F_{Sa,Ta}(x) \forall x \in [x, \frac{x}{k}]$$

$$F_{sa,Ta}(t) = F_{Sa,Ta}(x) \forall x \in [\frac{x}{k}, \frac{x}{k^2}]$$

Continuing this way we can prove that $F_{Sa Ta}(x) = 1 \forall x > 0$

$$\therefore Ta = Sa.$$

Hence S and T have a coincidence point.

Theorem 2.2 is not valid if S and T are not weakly compatible in view of the following example:

Example 2.5: Let $X = \{-1, 1, \frac{1}{2}, \dots, \frac{1}{n}, \dots, 0, -\frac{1}{2}, \dots, -\frac{(2^n - 1)}{2^n}, \dots\}$

Define S, T on X as: S(1) = 0, S(-1) = -1, $S\left(\frac{1}{n}\right) = \frac{1}{n+1}$, $n \ge 2$; $S(0) = \frac{-1}{2}$, ..., $S\left(-\frac{(2^n-1)}{2^n}\right) = \frac{-(2^{n+1}-1)}{2^{n+1}}$,

And $T(x) = 0 \ \forall x$ Then $S(X) = X - \{1, \frac{1}{2}\}, T(X) \subseteq S(X),$ T(X) is closed and SX is closed. Since $T\left(\frac{1}{n}\right) \to 0, S\left(\frac{1}{n}\right) = \frac{1}{n+1} \to 0$ and therefore property (E.A) holds. $F_{0,1}(t) = 1, t = kx$ and condition (ii) holds. But S1 = T1 and $ST1 = S0 = -\frac{1}{2}$, TS1 = T0 = 0

Therefore S and T are not weakly compatible.

The following example shows that Theorem 2.3 may not be valid if occasional weak compatibility is dropped.

Example 2.6: Let
$$X = \{1, \frac{1}{2}, \dots, \frac{1}{n}, \dots, 0, -\frac{1}{2}, \dots, -\frac{(2^2 - 1)}{2^2}, \dots, -\frac{(2^n - 1)}{2^n}, \dots\}$$

Define S by
$$S\left(\frac{1}{n}\right) = \frac{1}{n+1}$$
 for $n \ge 2$, $S0 = -\frac{1}{2}$,
 $S\left(-\frac{(2^n-1)}{2^n}\right) = -\frac{(2^{n+1}-1)}{2^{n+1}}$, and $S1 = 0$

Then $S(X) = X - \{ 1, \frac{1}{2} \},\$

Define T by $Tx = 0 \forall x$. Then property (E.A) holds, since $T\left(\frac{1}{n}\right) \rightarrow 0$, $S\left(\frac{1}{n}\right) = \frac{1}{n+1} \rightarrow 0$ since $F_{0,0}(kx) = 1$ and condition (i) holds. S1 = 0 = T1, TS1 = T0 = 0, $ST1 = S0 = \frac{1}{2}$ Hence S and T are not occasionally weakly compatible

Clearly S and T do not have a common fixed point.

References

- [1] Aamri. M and Moutawakil D.EI: Some new common fixed point theorems under strict contractive conditions, J. Math. Anal. Appl., 270, (2002), 181-188.
- [2] Cho. Y.J, Murthy. P.P and Stojakovic. M: Compatible mappings of type (A) and common fixed points in Menger spaces, Comm. of Korean Math. J., 7, (1992), 325-339.
- [3] Jungck. G and Rhoades. B.E: Fixed point foe set valued functions without continuity, Indian. J. Pure Appl. Math., 29, (1998), 227-238.
- [4] Jungck. G and Rhoades. B.E: Fixed point theorems for occasionally weakly compatible mappings, Fixed point theory, 7, (2006), 287-296.
- [5] Kubiaczyk. I and Sushil Sharma: Some common fixed point theorems in Menger space under strict contractive conditions. Southeast Asian Bulletin of Mathematics (2008) 12, 117 -124.
- [6] Radu. V: Some fixed point theorems in probabilistic Metric spaces, stability problems for stochastic models (Varma 1985), Lecture Notes in Math., Vol. 1233, Springer-Verlag, Berlin, (1987), 125-133.
- [7] Schweizer. B and Sklar. A: Statistical metric spaces, North Holland Amsterdam, (1983).