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Abstract

Probability theory can be understood as a mathematical model for the intuitive
notion of uncertainty. Probability theory is in all scientific fields. Also,
probability is used in many branches of pure mathematics, even in branches
one does not expect this, and like in convex geometry. | developed Complex
Probability Theory for analysis of complex and chaotic systems. | think that
probability has theoretical and experimental dimensions at the same time.
Universe has these probabilities dimensions. | combined them in this theory
and constructed four dimensional probabilities on Quaternion Algebra and
eight dimensional probabilities on Octonion Algebra and found all probability
spaces.

Introduction

The modern period of probability theory is connected with names like S.N. Bernstein
(1880-1968), E. Borel (1871-1956), and A.N. Kolmogorov (1903-1987). In particular,
in 1933 A.N. Kolmogorov published his modern approach of Probability Theory,
including the notion of a measurable space and a probability space.[1],[2],[3],[4].[5]

Notations

Notation of f Complex Probability

Definition-1-1:

Given as set QQ set and subsets A, B, Q then the following notation is used:

Intersection
ANB={eQ:ve Aandv e B}

Union
AUB ={veQ:ve Aor,orbothv € B}
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Set Theoretical Minus
A\B={veQ:ve Aandv ¢ B}

Complement
A ={veQ:vegAl

Empty Set
@ set without any element. .[1],[2],[3].[4].[5]

Components of Probability Space
Definition-1-2:
Any probability space (Q, F,P) consists of three components.

1. The elementary events or states vV which are collected in a non-empty Q set .

2. Any ocalgebra F, which is the system of observable subsets or events A < Q
.The interpretation is that one can usually not decide whether a system is in the
particular state v e Q ,but one can decide whether ve Aor v A.

3. Any measure P, which gives a probability to all A e F .This probability is a
number P(A)e [0,1]that describes how likely it is that the event Aoccurs. We

define the o algebras F, here we do not need any measure. [1],[2],[3].[4].[5]

o Algebras

Definition-1-3:

Let be Q2 a non-empty set. A system F of subsets A< Q is called oalgebraon Q if
1. T,0,F
2. AeF impliesthat A°:Q\AecF

3. ALA,..cFimpliesthat | JA eF

i=1

The pair (Q,F), where Fis acalgebra on , is called measurable space. The

elements A e F are called events. An event Aoccurs if v e Aand it does not occur if
ve A,

4. A,Be Fimpliesthat AUB e F, then Fis called an algebra. Every o algebra

is an algebra. Sometimes, the terms o field and field are used instead of o
algebra and algebra.

Space Definitions
Probability Space
Definition-2-1:
Let (Q,F), be a measurable space.
1. A map P:F —[01] is called probability measure if P(Q)=1and for all
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AL A,,..c Fwith A A =@ for i = jone has P(OAiJ:iP(Ai).

i=1

The triplet (Q, F, P)is called probability space.
2. Any map u:F —[0,w]is called measure if u()=0and for all

A, A,;,...e Fwith AnA; = for i jone has ﬂ(OA‘Jziﬂ(A‘)'

The triplet (Q, F, ) is called measure space.

3. Any measure space(Q, F,z)or a measure u is called ofinite provided that
thereare Q, c Q,k =1.2,..., such that

a. Q, eFforall k =1,2,..
QnNQ; = fori=j

C. Q:EOJQk
k=1
d. uQ)<e

The measure space(Q,F,u)or the measure pare called finite if 4(Q)<oo

[11.[2].[31.[41.[5]

Components of Complex Probability Space

Definition-2-2:

Any complex probability space (L, F,P) consists of three components .But
probability will have G theoretical and H experimental probability components
P(G,H)on complex space. Because of a complex probability space (Q,F,G,H)
consists of four components.

1. The elementary events or states vV which are collected in a non-empty Q set .

2. Any ocalgebra F, which is the system of observable subsets or events A < Q
.The interpretation is that one can usually not decide whether a system is in the
particular state v e Q ,but one can decide whether ve Aor v A.

3. Any measure P ,which gives a probability to all A e F .This probability is a
complex number P(A)< [0,1]+¢,[0,1]and P(A)e C that describes how likely it
is that the event Aoccurs. We define the oalgebras F, here we do not need
any measure. [1],[2],[3],[4].[5]

G Theoretical Probability Space

Definition-2-3:

G set is a collection of theoretical probability objects.
Let G is atheoretical probability space.
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G* is kdimensional theoretical probability space.
G= {go, o g

Theoretical probability is G(A) € [01]
Theoretical probability is mathematical values of probability.

H, Experimental Probability Space

Definition-2-4:

H, set is a collection of experimental probability objects.
Let H, is a experimental probability space.

H, is k dimensional experimental probability space.
H, = ht e, h*}

Experimental probability is H,(A) < [0,1]
Experimental probability is experimental values of probability.

P Complex Probability Space
Definition—2-5:
Let Pisacomplex probability space.
The form of a complex probability number is ¥ =G+ H,eand

¥(A)=G(A)+ H, (A,
P={¥=G+H,e eC[G H,, R}
{\P G+H.e eCle) =-1,G,H, e[o,l]}
P={¥(A)=G(A)+H, (A, € C|G(A)H,(A)e[01]
Let S is a complex probability set.
S={¥=G+H,e eP|G,H, R}
S={¥=G+Hpe e Ple =-1.G,H, e oal}
S ={¥(A)=G(A)+H,(A), € P|G(A) H,(A)e[01]}

B are events
)=G(A)+H, (A,
)=G(B)+ H,(B)e, are complex probabilities.

B))=(G(A)+G(B))+(H,(A)+ H,(B));



Complex Probability Theory 147

W(A)+¥(B) =2

Probability Definitions

G Theoretical Probability
Definition-3-1:

Let (Q, F), be a measurable space.

G is mathematical probability space. We will get theoretical probability from
mathematical results.

1. A map G:F —[01] is called probability measure if G(Q)=1and for all

AL A,,..c Fwith A A =@ for i = jone has G(UAJ: G(A).
i=1 i=1
The triplet (Q, F,G)is called theoretical probability space.
2. Any map u:F —[0,0]is called measure if u(@)=0and for all

AL A,;,...e Fwith AnA; =0 for i jone has ﬂ(OAjzi”(A‘)'

The triplet (Q, F, ) is called measure space.

3. Any measure space(Q, F,y)or a measure u is called o finite provided that
there are Q, < Q,k =1,2,..., such that

a. Q, eFforall k =1,2,..
QnNQ; =0 fori= ]

C. Q:EOJQk
k=1
d. uQ)<e

The measure space (Q, F, x) or the measure . are called finite if 1(Q)<o.
If we flip a coin, then we have either’heads” or “tails” on top, that means.

Probability of head and probability of tail are% to each of the two possible outcomes.

If the coin is fair, then heads and tails should receive the same probability. The reason
for this has to do with our intuitive notion of what a probability means.

In this sample, the two possible outcomes form the set Q = {head,tail}or
Q=th,t}

G(head)= G(tail)=%
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6(h)-G(t) -

G(head )+ G(tail ) =1

H, Experimental Probability
Definition-3-2:
Let (©, F), be a measurable space.

H,is experimental probability space. We will get experimental or relative
probability from experimental results.
1. Amap H,:F —[01] is called probability measure if H,(Q)=1and for all

A, A,,...e Fwith A nA; =@ for i = jone has HI(UAiJ:ZHl(Ai).
i=1 i=1
The triplet (Q, F, H, )is called experimental probability space.
2. Any map u:F —[0,0]is called measure if u(@)=0and for all

A, A,,...e Fwith A nA; =@ for i = jone has y(OAiJ:iy(Ai).

The triplet (Q, F, u)is called measure space.

3. Any measure space(Q, F,y)or a measure 4 is called ofinite provided that
there are Q, c Q,k =1.2,..., such that

Q eFforall k=12,..
QnNQ; =0 fori=j

c. a={Jo,
kL
d. (@ )<oo

The measure space (Q, F, 1) or the measure  are called finite if 2(Q)< .
If we toss the coin Q times and the number of heads among these Q tosses is Q,,

then relative frequency of heads is equal to Q Now if Qis large, then we tend to

Qn

think about 6 as being close to probability of heads. The relative frequency of tails

Q

can be written as a,where Q, is the number of tails among the Q tosses, and we

again think of %as being close to the probability tails. Since &+&:1, we see
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that at least intuitively, the probabilities of heads and tails should add up to one.
In this sample, the two possible outcomes form the set Q= {head,tail }or
Q=th,t}

Qs e
H,(head) =", H,(tail)= =
H,(head)+ H, (tail)=1

Y Complex Probability
Definition-3-3:
Let (€2, F), be a measurable space.

¥ is complex probability space. We will get complex probability from theoretical
and experimental results.

1. A map ¥:F —[0]] is called probability measure if ¥(Q)=1and for all

A, A,,...e Fwith A nA; =@ for i = jone has ‘P(UA,-J: w(A).
i=1 i=1
The triplet (Q, F, ¥)is called experimental probability space.
2. Any map u:F —[0,0]is called measure if u(@)=0and for all

A, A,,...e Fwith A nA; =@ for i = jone has y(OAiJ:iy(Ai).

The triplet (Q, F, u)is called measure space.

3. Any measure space(Q, F,y)or a measure u is called ofinite provided that
there are Q, c Q,k =1.2,..., such that

Q eFforall k=12,..
QnNnQ; =0 fori=j

c. a={Jo,
kL
d. (@ )<oo

The measure space (2, F, z) or the measure u are called finite if 2(Q)< oo.
Let complex probability is W(A)=G(A)+H(A), and Q= {head,tail}or
Q=th,t}

G Theoretical Probability
Q = {head, tail jor Q= {h,t}

G(head)zé,G(tail):%
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G(head )+ G(tail ) =1
H, Experimental Probability
= {head, tail jor Q = {h,t}
Qn N Q
H (head , H{(tail )= —
H (head) =2 Hail) = 3
H (head )+ H(tail) =

v Complex Probability
Q = {head, tail jor Q= {h,t}
¥(A)=G(A)+H(Ak,
¥ (head ) = G(head )+ H (head )e,
¥ (tail ) = G(tail )+ H (tail Je,

£

(head):£+%e1 (tail):%+%e1
(

¥ (head )+ P(tail ) = 1+1e,

Propositions

Proposition of Complex Probability

Definition-4-1:

Let (Q, F,P)be a complex probability space. Then the following assertions are

1. If A,A,,..eF suchthat A nA, =@ for i # jone has P(UAJzZP(A,)

i=1
2. If A,BeFthenP(A\B)=P(A)+P(ANB)
3. If BeFthen P(B°)=1-P(B),

4. IfA,A,,. cFthen P(OAijsiP(A,)

5. Continuity from below :

If A, A,...cFsuchthat A c A, c A, c....then LimP(A,)= P(UAHJ
nN—o0 n=1

6. Continuity from above:

IfA,A,,.cFsuchthat A DA DA, o..then LImP(A )= P(ﬂAnj

7. P(AUB)=P(A)+P(B)-P(ANB)
8. P(AUBUC)=P(A)+P(B)+P(C)-P(AnB)-P(ANC)-P(BNC)+P(ANBNC)
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9. For pair wise events A, A,,..., A, it is case that

QAJ:ZP(A)—ZP(A AA )+ SPA NA AA ) - =DM PA NA ALAA)

i<j i<j<k

Independence of Events

Definition-4-2:

Let (Q, F,P)be a complex probability space. The events A < F,i € K is an arbitrary
non-empty index set, are called independent, provide that for all distinct i,,...,i, € K
one has that

P(A, N A, A )=PA P(A, ).P(A)

Given A, A,,...€ F, one can easily see that only demanding

P(A, N A, N..A )= P(A)P(A,)..P(A, ).[11[2],[3],[4],[5]

Conditional Probability

Definition-4-3:

Let (Q, F,P)be a complex probability space. Suppose Aand Bare events in sample
space € ,and suppose thatP(B)>0.The conditional probability of Agiven Bis
defined as

P(%):%am A B e F .[11,[21.[31,[41.[5]

Complex Probability Operators
Product
Let

¥ =a,+ae
P= {ao +ae €Cle’ =-la,,a, € R}
Y =a,+ae
Y, =b, +be,

Multiplication is generally commutative ¥, x ¥, =¥, x ¥,

Conjugate
The conjugate of ¥ =a, +ae, is ¥ =a, —ae,
Y= {ao +ae e C‘ef =-la,,a, € R}

Y = {ao —ae € C‘el2 =-la,-a, € R}
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Magnitude
The magnitude of ¥ =a, +a.e, is [¥|=+/a," +a,”

Multiplicative Inverse
The multiplicative inverse of ¥ =a, +a.e, is

v
g _ 1 Wz0and V'i=——
¥ Yv
N a, —a,€
(ao + alel )(ao - alel)
\P—l — ao _alel
2 2
a, +a,
Division
Let
Y=a,+ae

\P:{ao +ae €Clef =-1,a,,a, € R}

¥, =a,+ae

¥, =b, +beand ¥, 20
\Pl

—=d,+d,e

LP 0 1~

2

¥ =1{d, +de eCle? =-1,d,.d, e R}

The conjugates of ¥, =a, +a,e, and ¥, =b, +be, are

¥, —a,-ae and'¥, =h, —be
\Pl (ao +3,6 )(bo B blel)

\Pz - (bo + blel )(bo - blel)
\Pl (ao +3,6 )(bo B blel)

¥, b, +b,?

Polar Notation
Let

Y=a,+ae
Y= {ao +ae e C‘el2 =-la,,a, € R}

The magnitude of ¥ =a, +a,e, is [¥|=+/a,” +a,’
Arg(W)= {6, + 27k} and 6= {0 <6, <360°| 6, R},
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The radius set is I = {rl =.a," +a,’ |r e R},

The polar notation is ¥ =r,(cosé, +e, sin 6,

a
——2|cosf, eR
Ja,” +a,’

a :
ﬁmmel eR
NV, +a,

The polar notation is ¥ = r,(cosd, +e, siné,)
Its conjugate is ¥ =r,(cos#, —e, siné,)

cosé = {cos 6, =

sin@ =4sing, =

Exponential Form
Let

Arg(¥)=1{0, + 27k} and 6 = {0 < 6, <360° |6, € R}

The radius setis I = {rl =.Ja," +a,° |1 R}
The polar form is ¥ =r,(cos @, +e, sin6,)
The exponential form is

e** = (cos g, + e, sin 6,)

Its conjugate is

e % =(cosf, —e sinb,)

Power Form
Let

Arg(W)= {6, + 27k} and 6= {0 <6, <360°| 6, R},

The radius setis I' = {rl :w/ao2 +a12 |1, e R}

The polar form is ¥ =r,(cos @, +e, siné,)
The power form is from degree nth power and n e Z
¥" =r"(cosné, +e,sinnd,)

Root Form
Let

Arg(¥) =16, + 27k} and 6= {0 < 6, <360° | 6, € R},

The radius setis I' = {rl :\/ao2 +a12 |1, e R}

The root form is from degree nth root,k =0,1,2,..,n-1 and k,ne Z
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n

W, = W[Cosel + 2k +e,sin 0+ 2k7zj
n

Its roots are ¥, = {¥,,¥,,... ¥, ,}

Addition
Y, =a,+ae
Y, =b, +be,

Y+, = (ao +bo)+(a1 +b1)el
Y, +%¥,=m; +me,
Y, +Y¥, = {mo +me, € C‘ef =-1m,,m e R}[6],[7],[8],[9],[10],[11],[12]
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