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Abstract 
 

In this paper, we have established some noiseless coding theorem for a 
generalized parametric useful mean length. Further, lower bounds on 
exponentiated useful codeword length have been obtained in terms of the 
useful inaccuracy of order α  and type β  and the generalized average useful 
codeword length. 
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Introduction 
Consider the following model for a finite random experiment S :  

  [ ]UPESn ;;=  (1.1)  
 
where ( )nEEEE ,..,, 21=  is a finite system of events ( ),,...,, 21 npppP =

,1,10 =≤≤ ∑ ii pp  is the probability distribution and ( ),,...,, 21 nuuuU =

niui ,...,2,1,0 =≥  is the utility distribution. The iu ’s are non-negative real numbers. 
 Now let us suppose that experimenter asserts that the i th outcome iE has the 
probability iq whereas the true probability is ip , with 1== ∑∑ ii qp . Thus we 
have two utility information schemes, (1.1) of a set of n events after an experiment 
and  

  [ ]UQESn ;;=∗ , 10 ≤≤ iq , 1=∑ iq , 0≥iu , (1.2)  
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 Unless otherwise stated ∑ will stand for∑
=

n

i 1

and the logarithms are to the base 

D (D>1) throughout the paper.  
 The quantitative-qualitative measure of inaccuracy [6,23] associated with the 
statement of and experimenter is given by 

  ( ) ∑−= iii qpuUQPI log;;  (1.3) 
 
 By considering weighted mean codeword length [10]  

  
( )

∑
∑=

ii

iii

pu
lpu

UL  (1.4) 

 
 Taneja and Tuteja [23] derived lower and upper bounds on ( )UL  in terms of 
( )UQPI ;;  .Longo [16], Gurdial and Pessoa [11], Autar and Khan [3], Hooda and 

Bhakar[12], Bhatia [4], and Singh, Kumar and Tuteja [22] considered the problem of 
‘useful’ information measures and used it studying the noiseless coding theorems of 
source involving utilities. 
 In section 2, we have established a generalized coding theorem for personal 
probability codes by considering useful inaccuracy of order α  and type β .  
 The mean length of a noiseless uniquely decodable code for a discrete random 
variable X  satisfies 

  ( ) ( ) 1+<≤ XHLXH UD  (1.5)  
 
where 

  ( ) ∑−= ii ppXH log  (1.6) 
 
is the Shannon’s entropy [20] of the random variable X . Shannon’s restriction of 
coding of X  to prefix codes is highly justified by the implicit assumption that the 
description will be concatenated and thus must be uniquely decodable. Since the set of 
allowed codeword lengths is the same for the uniquely decodable and instantaneous 
codes, cf. [1], [2], the expected codeword length is the same for both the set of codes. 
 There are some communication situations in which a random variable X  is being 
transmitted rather than a sequence of random variables. For this context Leung-Yang-
Cheong and Cover [15] considered one to one codes i.e., codes which assign a distinct 
binary code to each outcome of the random variable X  without regard to the 
condition that concatenations of the descriptions must be uniquely decipherable. 
 Bhatia [5], [7], have extended the idea of the one to one code to the Kerridge’s 
inaccuracy[13] and also derived lower bounds to the exponentiated mean codeword 
length for the best one to one codes in terms of a generalized inaccuracy of order α  . 
 In section 3, we generalized the idea of the best 1:1 code to useful inaccuracy of 
order α  and type β .  
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Coding Theorem 
Consider a function 

 
( )

( )

⎥
⎥
⎦

⎤

⎢
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−
=

∑
∑ −

ββ

αβββ
β
α α ii

iii

pu
qpu

UQPI
1

log
1

1;;  , ( ) .0,10 >≠> βα  (2.1) 

 
 When 1=β , (2.1) reduces to a measure of useful information measure of order α  
due to Bhatia [5]. 
 When 1=β  , 1=iu  for each ni ,...,2,1= , (2.1) reduces to the inaccu-racy measure 
given by Nath [17], further it reduces to Renyi’s [12] entropy by taking ii qp =  for 
each ni ,...,2,1= . 
 When 1=β  , 1=iu  for each ni ,...,2,1= and 1→α , (2.1) reduces to the measure 
due to Kerridge [13]. 
 When 1=iu  for each ni ,...,2,1=  and ii qp =  , for each ni ,...,2,1=  the measure 
(2.1) becomes the entropy for the β - power distribution derived from P studied by 
Roy[ 19].  
 We call (2.1) the generalized useful inaccuracy measure of order α  and type β .  
 Further consider  
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log1
ββ

β
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β  , ∞<<− t1  (2.2) 

 
 For 1=β  , ( )ULt

β  in (2.2) reduces to the useful mean length ( )ULt  of the code 
given by Bhatia [5]. 
 For 1=β  , 1=iu  for each ni ,...,2,1= , ( )ULt

β  in (2.2) reduces to the mean length 
given by Campbell [8]. 
 For 1=β  , 1=iu  for each ni ,...,2,1= and 1→α , ( )ULt

β  in (2.2) reduces to the 
optimal code length identical to Shannon [20]. 
 For 1=iu  for each ni ,...,2,1= , ( )ULt

β  in (2.2) reduces to the mean length given 
by Khan and Haseen [14].  
 Now we find the lower bounds of ( )ULt

β  in terms of ( )UQPI ;;β
α

 
under the 

condition 

  1≤−−∑ il
ii Dqp ββ  (2.3)  

 
where D  is the size of the code alphabet. Inequality (2.3) is a generalization of 
Kraft’s inequality. A code satisfying generalized Kraft’s inequality (2.3) would be 
termed as personal probability code. 
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Theorem 2.1: Let { }n
iiu 1= , { }n

iip 1= , { }n
iiq 1=  and { }n

iil 1=  satisfy the condition (2.3), then  

  ( ) ( )UQPIULt ;;β
αβ ≥  (2.4) 

 

where 
1

1
+

=
t

α , the equality occurs if and only if  

  
( )∑ −−= 1log αβββ

αββ

iii

ii
i qpu

qu
l  (2.5) 

 
Proof: By Holder’s inequality [21] 

  ( ) ( ) qq
i

pp
iii yxyx

11

∑∑∑ ≥  (2.6) 
 

 For all niyx ii .....2,1,0, => and ( ) 0,01,111
<≠<=+ qp

qp
 or ( ) .0,01 <≠< pq   

 We see that equality holds if and only if there exists a positive constant c such that 

  q
i

p
i cyx =  (2.7) 

 

 Making the substitutions tp −= , 
t

tq
+

=
1
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in (2.6) and using (2.3), we get 
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 Taking logarithms of both the sides with base D , we obtain (2.4). 
 Next, we obtain a result giving an upper bound to the generalized average ‘useful’ 
codeword length. 
 
Theorem 2.2: By property choosing the length nlll ,...,, 21 in the code of Theorem 2.1, 

( )ULt
β  can be made to satisfy the inequality 

  ( ) ( ) 1;; +< UQPIULt β
αβ  (2.8) 

 
 
Proof: From (2.5) it can be concluded that it is always possible to have a code 
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satisfying  
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(2.9)  

 
 From (2.9), we have 
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 Raising both sides of (2.10) to the power ⎟
⎠
⎞

⎜
⎝
⎛ −

α
α1  , we get  
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 Multiplying both sides of (2.11) by
α
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β
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 Taking logarithms on both sides and using the relation
1

1
+

=
t

α , we get (2.8). 

 
 
Lower bound on the exponentiated average ‘useful’ codeword length 
for the best 1:1 code 
Let X be a random variable taking on a finite number of values nxxx ,...,, 21  with 
probabilities ( )nppp ,...,, 21  and utilities ( )nuuu ,...,, 21 . Let ,,...,2,1, nili =  be the 
lengths of the code words in the best 1:1 binary code (0, 1, 00, 10, 01, 11, 000,…), for 
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encoding the random variable X , il  is the length of the codeword assigned to the 

output ix . It is clear that ...321 ≤≤≤ lll and in general ⎥
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⎤
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⎡
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ili , where ⎡ ⎤S

denotes the smallest integer greater than or equal to S . Thus the average ‘useful’ 
codeword length for the best 1:1 code is given by 
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 When utilities are ignored, (3.1) reduces to 1:1L , cf. [15]. 
 From (2.2), the exponentiated average ‘useful’ codeword length for binary codes 
can be given by 
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 When 1=β , (3.2) reduces to Bhatia’s [5] ‘useful’ codeword length for the best 
1:1 code. Thus the exponentiated average ‘useful’ codeword length for the best 1:1 
code is given by 
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 We will now prove the following theorem, which gives a lower bound on tL 1:1,β . 
 
Theorem 3.1: For ( )UQPI ;;β

α , ( )ULt
β  and tL 1:1,β  as given in (2.1), (3.2) and (3.3) 

respectively, the following estimates hold: 
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 Proof From (3.3), we have  
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 Now  
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 Applying Holder’s inequality to (3.7), we obtain 
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which gives (3.4). 
 Now from (2.8) 
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which proves (3.5). 
 
 
References 
 

[1] Abramson N., Information theory and coding, McGraw Hill, New York, 1963.  
[2] Ash R., Information theory, Inter science Pub., New York, 1965. 
[3] Autar R. and Khan A.B., On generalized ‘useful’ information for incomplete 

distribution, J. Combinatorics, Information and System Sciences, 14(4)(1989), 
187-191. 



170  P. Jha and Anjali Chandravanshi 
 

 

[4] Bhatia P.K., On generalized useful inaccuracy for incomplete probability 
distribution, Soochow J. Math., 25(2) (1999), 131-135. 

[5] Bhatia P.K., Useful inaccuracy of order α  and 1:1 coding, Soochow J. Math., 
21(1)(1995), 81-87. 

[6] Bhatia P.K. and Taneja H.C., On characterization of quantitative qualitative 
measure in inaccuracy, Inf. Sci. 51(1990), 135-141. 

[7] Bhatia P.K., H.C. Taneja and R.K. Tuteja, Inaccuracy and 1:1 code, 33:6, 
(1993), 905-907. 

[8] Campbell L.L., A coding theorem of Renyi’s entropy, Inf. Control, 8(1965), 
423-429. 

[9] Feinstein A., Foundation of Information Theory, McGraw HILL, New York 
(1958). 

[10] Guiasu S. and Picard C.F., Born infericutre de la Longuerur utile de certain 
codes, C.R. Acad. Sci. Paris, 273A (1971), 248-251. 

[11] Gurdial S. and Pessoa F., On useful information of order α , J. Comb. 
Information and syst. Sci., 2(1977), 158-162. 

[12] Hooda D.S. and. Bhaker U.S., A generalized ‘useful’ information measure and 
coding theo-rem, Soochow J. Math., 23(1997), 53-62. 

[13] Kerridge D.F., Inaccuracy and inference, J.R.Stat. Soc. Ser. B, 23(1961), 184-
194. 

[14] Khan A.B. and Ahmed H., Some noiseless coding theorem of entropy of order 
α  of the power distribution βP , Metron, 39 (3-4) (1981), 87-94. 

[15] Leung-Yan Cheong and Cover T., Some equivalence between Shannon entropy 
and Kolmogrov complexity, IEEE Trans. On Inf. Theory, IT-24, # (1978), 331-
338. 

[16] Longo G., Quantitative-Qualitative Measure of information, Springer Verlag, 
New York, 1972. 

[17] Nath P., A axiomatic characterization of inaccuracy for discrete generalized 
probability distribution, Opsearch, 7(1970), 115-133. 

[18] Renyi A., On measure of entropy and information, Proceeding 4th Berkley 
Symposium on Mathematical Statistics and Probability, University of 
California Press, 14(4) (1966), 547-561. 

[19] Roy L.K., Comparison of Renyi’s entropies of power distribution, ZAMM, 
56(1976), 217-218. 

[20] Shannon C.E., A Mathematical theory of Communication, Bell System, Tech. 
J., 27(1948), 394-423, 623-656. 

[21] Shisha O., Inequalities, Academic Press, New York, 1967. 
[22] Singh R.P., Kumar R and Tuteja R.K., Applications of Holder’s inequality in 

information theory, information Sciences, 152 (2003), 145-154. 
[23] Taneja H.C. and Tuteja R.K., Characterization of quantitative measure of 

inaccuracy, Kybernetika, 22:5(1986), 393-402.  


