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Abstract 
 

In this paper, we study the uniqueness of two entire and meromorphic 
functions with their nonlinear differential polynomials. We consider the case 
for some general differential polynomials [݂௡ܲሺ݂ሻ ݂ ′] where ܲሺ݂ሻ is a 
polynomial which generalize and improve previous results of Fang and 
Hong[1] and Lahiri and Mandal [7]. 
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Introduction 
In this paper, we use the standard notations and terms in the value distribution theory 
[12]. For any nonconstant meromorphic function ݂ሺݖሻ on the complex plane C, we 
denote by Sሺr, fሻ any quantity satisfying Sሺr, fሻ = oሼܶሺݎ, ݂ሻሽ, as r→+ , except 
possibly for a set of ݎ of finite linear measures. A meromorphic function ܽሺݖሻ is 
called a small function with respect to fሺݖሻ if Tሺr, aሻ ൌ Sሺr, fሻ. Let Sሺ݂ሻ be  the set of 
meromorphic function in the complex plane C which are small functions with respect 
to f . Set Eሺܽሺݖሻ, fሻ  ൌ ሼݖ: ݂ሺݖሻ െ ܽሺݖሻ ൌ 0ሽ, aሺzሻ א   Sሺfሻ, where a zero point with 
multiplicity m is counted m times in the set. If these zero points are only counted 
once, then we denote the set by ܧത (a, f). Let k be ܽሺݖሻ a positive integer. Set ܧ௞ሻ(ܽሺݖሻ, 
f) =൛ݖ: ݂ሺݖሻ െ ܽሺݖሻ ൌ 0, ,݅׌ 1 ൑ ݅ ൑ ݇, .ݏ .ݐ , ݂ሺ௜ሻሺݖሻ െ ܽሺ௜ሻሺݖሻ ് 0ൟ, where a zero 
point with multiplicity m is counted m times in the set. 
 Let ݂ሺݖሻ and ݃ሺݖሻ be two transcendental meromorphic functions, ܽሺݖሻ א ܵሺ݂ሻ ת
ܵሺ݃ሻ. 
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 If Eሺܽሺݖሻ, fሻ  ൌ  Eሺܽሺݖሻ, gሻ, then we say that fሺzሻ and gሺzሻ share the value ܽሺݖሻ 
CM,  especially, we say that fሺzሻ and gሺzሻ have the same fixed points when ܽሺݖሻ= ݖ.  
 If ܧതሺa, fሻ  ൌ ഥܧ   ሺa, gሻ, then we say that f(z) and g(z) share the ܽሺݖሻ IM. If 
,ሻݖ௞ሻሺܽሺܧ = (ሻ, fݖሺܽ)௞ሻܧ gሻ, we say that fሺzሻ  െ  a and gሺzሻ –  a have same zeros with 
the same  multiplicities ൑  k. 
 Moreover, we also use the following notations. 
 We denote by ௞ܰሻሺݎ, ݂ሻ the counting function for poles of ݂ሺݖሻ with multiplicities 
൑ ݇, and by ഥܰ௞ሻሺݎ, ݂ሻ the corresponding one for which the multiplicity is not counted. 
Let ሺܰ௞ሺݎ, ݂ሻ be the counting function for poles of ݂ሺݖሻ with multiplicities ൒ ݇, and 
let ഥܰሺ௞ሺݎ, ݂ሻ be the corresponding one for which the multiplicity is not counted. Set 

௞ܰሺݎ, ݂ሻ ൌ ഥܰሺݎ, ݂ሻ ൅ ഥܰሺଶሺݎ, ݂ሻ ൅ ڮ ൅ ഥܰሺ௞ሺݎ, ݂ሻ.  
 Similarly, We have the notations 

   ௞ܰሻ ቀݎ, ଵ
௙

ቁ , ഥܰ௞ሻ ቀݎ, ଵ
௙

ቁ , ሺܰ௞ ቀݎ, ଵ
௙

ቁ , ഥܰሺ௞ ቀݎ, ଵ
௙

ቁ , ௞ܰ ቀݎ, ଵ
௙

ቁ.  
 
 Let fሺzሻ and gሺzሻ be two nonconstant meromorphic functions and ܧതሺ1, fሻ ൌ
 Eഥሺ1, gሻ. 
 We denote by ഥܰ௅ሺݎ, ଵ

ሺ௙ିଵሻ
ሻ the counting function for 1-points of both fሺzሻ and 

gሺzሻ about which fሺzሻ has larger multiplicity than gሺzሻ, with multiplicity is not being 
counted, and denote by ଵܰሿሺݎ, ଵ

ሺ௙ିଵሻ
ሻ the counting function for common simple 1-

points of both ݂ሺݖሻ and gሺzሻ where multiplicity is not counted. Similarly, we have the 
notation ഥܰ௅ ቀݎ, ଵ

ሺ௚ିଵሻቁ. 
 During the last few years, a considerable amount of work is being done on the 
uniqueness problem concerning differential polynomials (cf. [1, 4, 5, 6]). Recently, 
Fang and Hong[1] proved the following result. 
 
Theorem A: Let ݂ and ݃ be two transcendental entire function and nሺ൒  11ሻ be an 
positive integer. If ݂௡ሺ݂ െ 1ሻ݂ ′and ݃௡ሺ݃ െ 1ሻ݃ share 1CM, then ݂ ؠ ݃. 
 In 2005, Lahiri and Mandal [7] proved the following two theorems. 
 
Theorem B: Let ݂ and ݃ be two transcendental entire functions and nሺ൒  10ሻ be an 
positive integer. If ܧଶሻሺ1; ݂௡ሺ݂ െ 1ሻ݂ ′ሻ ൌ ;ଶሻሺ1ܧ ݃௡ሺ݃ െ 1ሻ݃′ሻ, then ݂ ؠ ݃. 
 
Theorem C: Let ݂ and ݃ be two transcendental meromorphic functions such that 
Θሺ∞; ݂ሻ ൅ Θሺ∞; ݃ሻ ൐ ସ

௡ାଵ
 and let ݊ሺ൒ 17ሻ be an positive integer. If ܧଶሻሺ1; ݂௡ሺ݂ െ

1ሻ݂ ′ሻ  ൌ ;ଶሻሺ1ܧ ݃௡ሺ݃ െ 1ሻ݃′ሻ, then ݂ ؠ ݃. 
 Naturally we can ask whether there exists a corresponding unicity theorem to 
Theorem B and Theorem C for [݂௡ܲሺ݂ሻ ݂ ′] where ܲሺ݂ሻ is a polynomial. In this 
paper, we give a positive answer to above question and prove the following two 
theorems. 
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Uniqueness of Nonlinear Differential Polynomials 
Theorem 1.1: Let ݂ and ݃ be two transcendental meromorphic functions. Let 
ܲሺ݂ሻ ൌ ܽ௠݂௠ ൅ ܽ௠ିଵ݂௠ିଵ ൅ ڮ ൅ ܽଵ݂ ൅ ܽ଴, ሺܽ௠ ് 0ሻ, and ܽ௜ሺ݅ ൌ 0, 1, … , ݉ሻ is 
the first nonzero coefficient from the right, and n, m, k be a positive integer with 
nሺ൐ m ൅ 10ሻ, ݇ ൒ 3. If ܧ௞ሻሺ1; ݂௡ܲሺ݂ሻ݂ᇱሻ ൌ ;௞ሻሺ1ܧ ݃௡ܲሺ݃ሻ݃ᇱሻ, then ݂ ؠ ݃. 
 
Theorem 1.2: Let ݂ and ݃ be two transcendental entire functions. Let ܲሺ݂ሻ ൌ
ܽ௠݂௠ ൅  ܽ௠ିଵ݂௠ିଵ ൅ ڮ ൅ ܽଵ݂ ൅ ܽ଴, ሺܽ௠ ് 0ሻ, and ܽ௜ሺ݅ ൌ 0, 1, … , ݉ሻ is the first 
nonzero coefficient from the right, and n, m, k be a positive integer with nሺ൐  ݉ ൅ 6ሻ, 
݇ ൒ 3. If ܧ௞ሻሺ1; ݂௡ܲሺ݂ሻ݂ᇱሻ ൌ ;௞ሻሺ1ܧ ݃௡ܲሺ݃ሻ݃ᇱሻ, then ݂ ؠ ݃. 
 
 
Lemmas 
In this section, we present some lemmas which are needed in the sequel. 
 
Lemma 2.1: ([8, 10]) Let ݂ be a nonconstant meromorphic function and ܲሺ݂ሻ ൌ ܽ଴ ൅ 
ܽଵ݂ ൅ ڮ ൅ ܽ௡݂௡, where ܽ଴, ܽଵ, … , ܽ௡are constants and ܽ௡ ് 0. Then 

  ܶ൫ݎ, ܲሺ݂ሻ൯ ൌ ݊ܶሺݎ, ݂ሻ ൅ ܵሺݎ, ݂ሻ. 
 
Lemma 2.2: ([11]) Let ݂ be a nonconstant meromorphic function. Then 

  ܰ൫ݎ, 0; ݂ሺ௞ሻ൯ ൑ ݇ ഥܰሺݎ, ∞; ݂ሻ ൅ ܰሺݎ, 0; ݂ሻ ൅ ܵሺݎ, ݂ሻ. 
 
Lemma 2.3: Let ݂ and ݃ be two nonconstant meromorphic functions. Then 
݂௡ܲሺ݂ሻ݂ᇱ݃௡ܲሺ݃ሻ݃ᇱ ് 1 where n ൅  mሺ൒  6ሻ is an positive integer. 
 
Proof: Let 
(2.1)  ݂௡ܲሺ݂ሻ݂ᇱ݃௡ܲሺ݃ሻ݃ᇱ ؠ 1 
 
 Let ݖ଴ be a 1-point of ݂ with multiplicity pሺ൒ 1ሻ. Then ݖ଴ is a pole of ݃ with 
multiplicity qሺ൒ 1ሻ such that np ൅ p െ  1 ൌ  nq ൅  q ൅  mq ൅  1, 
i.e., 
(2.2)  mq ൅  2 ൌ  ሺn ൅  1ሻሺp െ qሻ 
 
 From (2.2) we get q ൒ ୬ିଵ

୫
 and again from (2.2) we obtain 

݌   ൒ ଵ
௡ାଵ

ቂሺ௡ା௠ାଵሻሺ௡ିଵሻ
௠

൅ 2ቃ ൌ ௡ା௠ିଵ
௠

. 
 
 Let ݖଵ be a zero of Pሺfሻ with multiplicity ݌ଵሺ൒ 1ሻ. Then ݖଵ is a pole of ݃ with 
multiplicity ݍଵሺ൒ 1ሻ, say. So from (2.1) we get 
ଵ݌2    െ 1 ൌ ሺ݊ ൅ ݉ ൅ 1ሻݍ ൅ 1  
   ൒ ሺ݊ ൅ ݉ ൅ 2ሻ 
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   i.e., 

ଵ݌    ൒ ሺ௡ା௠ାଷሻ
ଶ

  
 
 Since a pole of ݂ is either a zero of ݃௡Pሺgሻ or a zero of ݃ᇱ. we have 
 ഥܰሺݎ, ∞; ݂ሻ ൑ ഥܰሺݎ, 0; ݃ሻ ൅ ഥܰሺݎ, 0; ݃௠ሻ ൅ ഥܰ଴ሺݎ, 0; ݃ᇱሻ ൅ ܵሺݎ, ݂ሻ ൅ ܵሺݎ, ݃ሻ 

  ൑ ௠
௡ା௠ିଵ

ܰሺݎ, 0; ݃ሻ ൅ ଶ
௡ା௠ାଷ

ܰሺݎ, 0; ݃௠ሻ ൅ ഥܰ଴ሺݎ, 0; ݃ᇱሻ 

  ൅ܵሺݎ, ݂ሻ ൅ ܵሺݎ, ݃ሻ 

  ൑ ቀ ௠
௡ା௠ିଵ

൅ ଶ௠
௡ା௠ାଷ

ቁ ܶሺݎ, ݃ሻ൅ ഥܰ଴ሺݎ, 0; ݃ᇱሻ ൅ ܵሺݎ, ݂ሻ ൅ ܵሺݎ, ݃ሻ. 
 
 Where ഥܰ଴ሺݎ, 0; ݃ᇱሻ denotes the reduced counting function of those zeros of 
݃ᇱ which are not the zeros of gPሺgሻ. 
 As ܲሺ݂ሻ ൌ ܽ௠݂௠ ൅  ܽ௠ିଵ݂௠ିଵ ൅ ڮ ൅ ܽଵ݂ ൅ ܽ଴ where ܽ௠, ܽ௠ିଵ,…,ܽ଴ are 
݉ distinct complex numbers. Then by second fundamental theorem of Nevanlinna we 
get 

݉ܶሺݎ, ݂ሻ ൑ ഥܰሺݎ, ∞; ݂ሻ ൅ ഥܰሺݎ, 0; ݂ሻ ൅ ෍ ഥܰ൫ݎ, ௝ܽ; ݂൯ െ ഥܰ଴ሺݎ, 0; ݂ᇱሻ ൅ ܵሺݎ, ݂ሻ
௠

௝ୀଵ

 

 ൑ ഥܰሺݎ, 0; ݂ሻ ൅ ഥܰሺݎ, ∞; ݂ሻ ൅ ഥܰሺݎ, ܽ; ݂௠ሻ െ ഥܰ଴ሺݎ, 0; ݂ᇱሻ ൅ ܵሺݎ, ݂ሻ  
 
(2.3) ൑ ቀ ௠

௡ା௠ିଵ
൅ ଶ௠

௡ା௠ାଷ
ቁ ሼܶሺݎ, ݃ሻ ൅ ܶሺݎ, ݂ሻሽ ൅ ഥܰ଴ሺݎ, 0; ݃ᇱሻ  

  െ ഥܰ଴ሺݎ, 0; ݂ᇱሻ ൅ ܵሺݎ, ݂ሻ ൅ ܵሺݎ, ݃ሻ.  
 
 Similarly, we have 
  ݉ܶሺݎ, ݃ሻ ൑ ቀ ௠

௡ା௠ିଵ
൅ ଶ௠

௡ା௠ାଷ
ቁ ሼܶሺݎ, ݃ሻ ൅ ܶሺݎ, ݂ሻሽ ൅ ഥܰ଴ሺݎ, 0; ݂ᇱሻ  

 
(2.4)  െ ഥܰ଴ሺݎ, 0; ݃ᇱሻ ൅ ܵሺݎ, ݂ሻ ൅ ܵሺݎ, ݃ሻ.  
 
 Adding (2.3) and (2.4) we obtain 
 ቀ1 െ ଶ

௡ା௠ିଵ
െ ସ

௡ା௠ାଷ
ቁ ሼܶሺݎ, ݃ሻ ൅ ܶሺݎ, ݂ሻሽ ൑ ܵሺݎ, ݂ሻ ൅ ܵሺݎ, ݃ሻ.  

 
which is a contradiction. This proves the Lemma. 
 
Lemma 2.4: ([2]) Let ݂ and ݃ be two nonconstant meromorphic functions, and let ݇ 
be two positive integer. If ܧ௞ሻሺ1, fሻ  ൌ  E୩ሻሺ1, gሻ, then one of the following cases must 
occur: 
 ܶሺݎ, ݂ሻ ൅ ܶሺݎ, ݃ሻ ൑ ଶܰሺݎ, ∞; ݂ሻ ൅ ଶܰሺݎ, 0; ݂ሻ ൅ ଶܰሺݎ, ∞; ݃ሻ ൅ ଶܰሺݎ, 0; ݃ሻ 
  ൅ ഥܰሺݎ, 1; ݂ሻ ൅ ഥܰሺݎ, 1; ݃ሻ െ ଵܰሿሺݎ, 1; ݂ሻ ൅ ഥܰሺݎ, 1; ݂| ൒ ݇ ൅ 1ሻ 
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  ൅ ഥܰሺݎ, 1; ݃| ൒ ݇ ൅ 1ሻ ൅ ܵሺݎ, ݂ሻ ൅ ܵሺݎ, ݃ሻ.  
 
 ii) ݂ ൌ ሺ௕ାଵሻ௚ାሺ௔ି௕ିଵሻ

௕௚ାሺ௔ି௕ሻ
, where ܽ ് 0, ܾ are two constants. 

 
Lemma 2.5: ([3]) Let ݂ and ݃ be two nonconstant meromorphic functions. If ݂ and ݃ 
share 1IM, then one of the following cases must occur: 

i. ܶሺݎ, ݂ሻ ൅ ܶሺݎ, ݃ሻ ൑ 2ሾ ଶܰሺݎ, ∞; ݂ሻ ൅ ଶܰሺݎ, 0; ݂ሻ ൅ ଶܰሺݎ, ∞; ݃ሻ ൅
ଶܰሺݎ, 0; ݃ሻሿ 

  ൅3 ഥܰ௅ሺݎ, 1; ݂ሻ ൅ 3 ഥܰ௅ሺݎ, 1; ݃ሻ ൅ ܵሺݎ, ݂ሻ ൅ ܵሺݎ, ݃ሻ. 
 

ii. ݂ ൌ ሺ௕ାଵሻ௚ାሺ௔ି௕ିଵሻ
௕௚ାሺ௔ି௕ሻ

, where ܽ ് 0, ܾ are two constants. 
 
Lemma 2.6: Let ݂ and ݃ be two transcendental meromorphic functions, nሺ൐  ݉ ൅ 6ሻ 
be positive integer, and let F ൌ  f ୬Pሺfሻf ᇱ and G ൌ  g୬Pሺgሻgᇱ. If 

(2.5) Fൌ ሺ௕ାଵሻீାሺ௔ି௕ିଵሻ
௕ீାሺ௔ି௕ሻ

, 
 
where ܽ ് 0, ܾ are two constants, then f ؠ  g. 
 
Proof: Using the same argument as in [9], we obtain Lemma 2.6 . 
 
Lemma 2.7: Let ݂ and ݃ be two transcendental meromorphic function and 

ଵܨ  ൌ ݂௡ାଵ ቂ ௔೘
௠ା௡ାଵ

݂௠ ൅ ௔೘షభ
௠ା௡

݂௠ିଵ ൅ ڮ ൅ ௔బ
௡ାଵ

ቃ 

ଵܩ  ൌ ݃௡ାଵ ቂ ௔೘
௠ା௡ାଵ

݃௠ ൅ ௔೘షభ
௠ା௡

݃௠ିଵ ൅ ڮ ൅ ௔బ
௡ାଵ

ቃ 
 
 where nሺ൐ ݉ ൅ 2ሻ is an integer. Then F ؠ G implies that ܨଵ ؠ  .ଵܩ
 
Proof: Let F ؠ G , then ܨଵ ؠ ଵܩ ൅ ܿ where ܿ is a constant. Let ܿ ് 0. Then by second 
fundamental theorem we get 
 ܶሺݎ, ଵሻܨ ൑ ഥܰሺݎ, ∞; ଵሻܨ ൅ ഥܰሺݎ, 0; ଵሻܨ ൅ ഥܰሺݎ, ܿ; ଵሻܨ ൅ ܵሺݎ,  ଵሻܨ

   ഥܰሺݎ, ∞; ݂ሻ ൅ ഥܰሺݎ, 0; ݂ሻ ൅ ഥܰ ቀݎ, ௔೘
௠ା௡ାଵ

; ݂௠ቁ  

  ൅ ഥܰሺݎ, 0; ݃ሻ ൅ ഥܰ ቀݎ, ௔೘
௠ା௡ାଵ

; ݃௠ቁ ൅ ܵሺݎ, ݂ሻ  

  ൑ 2ܶሺݎ, ݂ሻ ൅ ݉ܶሺݎ, ݂ሻ ൅ ܶሺݎ, ݃ሻ ൅ ݉ܶሺݎ, ݃ሻ ൅ ܵሺݎ, ݂ሻ.  
 
 Hence we get 
(2.6) ሺ݉ ൅ ݊ ൅ 1ሻܶሺݎ, ݂ሻ ൑ ሺ2 ൅ ݉ሻܶሺݎ, ݂ሻ ൅ ሺ݉ ൅ 1ሻܶሺݎ, ݃ሻ ൅ ܵሺݎ, ݂ሻ. 
 
 Similarly, we have 
(2.7) ሺ݉ ൅ ݊ ൅ 1ሻܶሺݎ, ݃ሻ ൑ ሺ2 ൅ ݉ሻܶሺݎ, ݃ሻ ൅ ሺ݉ ൅ 1ሻܶሺݎ, ݂ሻ ൅ ܵሺݎ, ݃ሻ. 
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 Adding (2.6) and (2.7) we obtain 
ሺ݉ ൅ ݊ ൅ 1ሻሼܶሺݎ, ݂ሻ ൅ ܶሺݎ, ݃ሻሽ ൑ ሺ3 ൅ 2݉ሻሼܶሺݎ, ݂ሻ ൅ ܶሺݎ, ݃ሻሽ ൅ ܵሺݎ, ݂ሻ ൅ ܵሺݎ, ݃ሻ. 
i.e., 
ሺ݊ െ ݉ െ 2ሻሼܶሺݎ, ݂ሻ ൅ ܶሺݎ, ݃ሻሽ ൑ ܵሺݎ, ݂ሻ ൅ ܵሺݎ, ݃ሻ. 
 
which is a contradiction. So ܿ ൌ 0 and the Lemma is proved. 
 
 
Proofs of the Theorems 
Proof of Theorem 1.1: Let ܨ ൌ ݂௡ܲሺ݂ሻ݂ᇱand Gൌ ݃௡ܲሺ݃ሻ݃. 
 
Since ݇ ൒ 3, we have 
ഥܰሺݎ, 1; ሻܨ ൅ ഥܰሺݎ, 1; ሻܩ െ ଵܰሿሺݎ, 1; ሻܨ ൅ ഥܰሺݎ, 1; |ܨ ൒ ݇ ൅ 1ሻ ൅ ഥܰሺݎ, 1; |ܩ ൒ ݇ ൅ 1ሻ 

 ൑ ଵ
ଶ

ܰሺݎ, 1; ሻܨ ൅ ଵ
ଶ

ܰሺݎ, 1; ሻܩ ൑ ଵ
ଶ

ܶሺݎ, ሻܨ ൅ ଵ
ଶ

ܶሺݎ, ሻܩ ൅ ܵሺݎ, ݂ሻ ൅ ܵሺݎ, ݃ሻ.  
 
Then (i) in Lemma 2.4 becomes 
ܶሺݎ, ሻܨ ൅ ܶሺݎ, ሻܩ ൑ 2ሼ ଶܰሺݎ, ∞; ሻܨ ൅ ଶܰሺݎ, 0; ሻܨ ൅ ଶܰሺݎ, ∞; ሻܩ ൅ ଶܰሺݎ, 0;  ሻሽܩ
 ൅ܵሺݎ, ݂ሻ ൅ ܵሺݎ, ݃ሻ.  
 
By the definition of ܩ ,ܨ we have 
(3.1) ଶܰሺݎ, ∞; ሻܨ ൅ ଶܰሺݎ, 0; ሻܨ ൑ 2 ഥܰሺݎ, ∞; ݂ሻ ൅ 2 ഥܰሺݎ, 0; ݂ሻ ൅
ܰሺݎ, ܿଵ; ݂ሻ ൅ ڮ ൅ ܰሺݎ, ܿ௠; ݂ሻ  ൅ܰሺݎ, 0; ݂ᇱሻ. 
 
Similarly, we obtain 
(3.2) ଶܰሺݎ, ∞; ሻܩ ൅ ଶܰሺݎ, 0; ሻܩ ൑ 2 ഥܰሺݎ, ∞; ݃ሻ ൅ 2 ഥܰሺݎ, 0; ݃ሻ ൅
ܰሺݎ, ܿଵ; ݃ሻ ൅ ڮ ൅ ܰሺݎ, ܿ௠; ݃ሻ ൅ܰሺݎ, 0; ݃ᇱሻ. 
 
By Lemma 2.2 and (2.6), (2.7) and (3.1), we get 
ܶሺݎ, ሻܨ ൅ ܶሺݎ, ሻܩ ൑ 4 ഥܰሺݎ, ∞; ݂ሻ ൅ 4 ഥܰሺݎ, 0; ݂ሻ ൅ 2ܰሺݎ, ܿଵ; ݂ሻ ൅ ڮ ൅ 2ܰሺݎ, ܿ௠; ݂ሻ 
 ൅2ܰሺݎ, 0; ݂ᇱሻ ൅ 4 ഥܰሺݎ, ∞; ݃ሻ ൅ 4 ഥܰሺݎ, 0; ݃ሻ ൅ 2ܰሺݎ, ܿଵ; ݃ሻ ൅ ڮ ൅ 
 ൅2ܰሺݎ, ܿ௠; ݃ሻ ൅ 2ܰሺݎ, 0; ݃ᇱሻ ൅ ܵሺݎ, ݂ሻ ൅ ܵሺݎ, ݃ሻ.  
 
Then 
ሺ݊ ൅ ݉ ൅ 2ሻሼܶሺݎ, ݂ሻ ൅ ܶሺݎ, ݃ሻሽ

൑ ሺ12 ൅ 2݉ሻሼܶሺݎ, ݂ሻ ൅ ܶሺݎ, ݃ሻሽ ൅ ܵሺݎ, ݂ሻ ൅ ܵሺݎ, ݃ሻ. 
 
 By n ൐ 10 ൅ m, we get a contradiction. 
 Hence ܨ and ܩ satisfy (ii) in Lemma 2.4. 
 By Lemma 2.3 and Lemma 2.7, we get f ؠ g. This completes the proof. 
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Proof of Theorem 1.2: Since ݂ and ݃ are entire functions we have ഥܰሺݎ, ∞; ݂ሻ ൌ
ഥܰሺݎ, ∞; ݃ሻ ൌ 0. Proceeding as in the proof of Theorem 1.1 we can easily prove 
Theorem 1.2. 
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