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Abstract
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Introduction

Convexity plays a vital role in many aspects of mathematical programming. To relax
convexity assumptions imposed on the functions involved, various generalized
notions have been proposed. One of the useful generalizations is generalized (F,p)-
convexity introduced by Preda [18], an extension of F-convexity defined by Hanson
and Mond [10] and generalized p-convexity defined by Vial [19,20].

Hanson and Mond [9] considered a dual formulation for a class of variational
problems. Some duality results for a class of differentiable multiobjective variational
problems were studied in [4]. Mishra and Mukherjee [13] discussed duality for
multiobjective variational problems containing generalized (F,p)-convex functions.
Mukherjee and Rao [16] considered a mixed type dual for multiobjective variational
problem and various duality results were established by relating efficient solutions
between this mixed type dual pair. Ahmad and Gulati [2] considered a mixed type
duality model for multiobjective variational problems and a number of duality results
were established by relating proper efficient solutions between this mixed type dual
pair. Husain et al. [11] have studied optimality and duality for multiobjective
variational problems involving higher order derivatives.
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Bector and Singh [3] introduced B-vex functions. Bhatia and Kumar [5]
introduced B-vex functions for variational problems. B-type 1 functions and
generalized B-type | functions were recently introduced by Bhatia and Mehra [6].
Further extension in the form of BF-type | functions were made by Bhatia and Sharma
[7] for continuous case. Mishra et al. [14] introduced the class of V-univex type |
functions and their generalizations. Khazafi and Rueda [12] extended V-univex type |
functions for multiobjective variational programming problems and various
sufficiency and mixed type duality results were established under generalized V-
univex type I functions.

In this paper, we have introduced higher order univex type | functions their
generalizations for continuous case. These functions generalize the class of BF-type |
functions [7] and (b,F)-convex functions [17]. Using these concepts optimality and
duality results have been established for multiobjective variational problems.

Definitions and Preliminaries
We use the following notations for vector inequalities. For x,ye R", we have

X<y iff x; <vy;,i=1,2,...,n,
x <yiff x<yand x =y,
X <yiff x; <y,,i=1,2,...,n.

Let I=[a,b] be real interval and K={2,..,k}, M={,2,..,m}. Let
¢:IXR"XR"XR" — R be continuously differentiable function. In order to consider
(. x(1),x(t),X(t)), where x(t):1 > R" is twice differentiable with its first and second
order derivatives x(t) and X(t) respectively.

For notational simplicity, we write x(t),x(t),X(t) as x,x,X respectively, as and
when necessary. We denote the partial derivatives of ¢ by ¢,, ¢,,and ¢,, where

¢x = a¢ a¢ a¢ | ¢x = |:a¢l a¢ 1 a¢i| )

| OX, OX,  OX, | oX, OX,  OX,
j=| 20 20 e
olex, " ox, T ox,

The partial derivatives of other functions used will be written similarly. Let
PS(I,R") denote the space of all piecewise smooth n-dimensional vector functions x

defined on compact subset | of R with norm |x|= [x|. +[DX| ., where the
differential operator D is given by
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y=Dx < x(t)=a + _tfy(s)ds

in which « is a given boundary value. There D = p except at discontinuties.

We consider the following multiobjective variational problem:

(MOP) Minimize T{fl(t,x(t),x(t),x(t))}dt ..... .T{fk(t,x(t),X(t),X(t))}dt},

subject to x(a) = 0= x(b), (1.1)
x(a) = 0 = x(b),

h (tx(0).X([)X(1) <0, tel, jeM, (1.2)
x(t) e PS(I,R"), (1.3)

where fi, ie K={12,..,k} and h;, je M ={1,2,...,m} are assumed to be continuously
differentiable functions defined on IXR"XR"XR". Let A is the set of feasible solutions
of (MOP). Efficiency is defined in the usual sense as defined in [4].
In relation to (MOP), we introduce the following multiple problems (P°) for each
r=1,2,....k;
b

(PY) Minimize | [{F"(tx(t)x(0).()}dt |,

r
a

subject to (1.1)-(1.3).
b

j {F(tx(t) X().%(1)}dt < i{fi(t,xo(t),xo(t),xo(t))}dt, ieK,izr

a

The following lemma can be proved on the lines of Chankong and Haimes [8].

Lemma 2.1: x° is an efficient solution to (MOP) if and only if x° is an optimum
solution of (P°) for each r=1,2,... k.

Definition 2.1: A functional F:IXR"XR"XR"XR"XR"XR"XR" — Ris said to be
sublinear with respect to the eighth variable if for any x,x* ->R", xx°eR",
%X°eR",

FLEx X% x° %0 %%+, | < FLEX%X° X%, | + F[txxxx°x° X% a, |,

(A)
forany a,,a, eR",



270 Raman Patel

and
Fltxx%x° X0 %% 0a | =aF[ txx%x°x° %%a], forany e €R, @20, aeR". (B)

We define the following univex type | functions and their generalizations.
Let us consider a sublinear functional F and the functions f:IXR"XR"XR" — R¥,

h:IXR"XR"XR" — R™. We assume that f and h are continuously differentiable
functions.

Let 7(txx°):IXR"XR" - R", ¢,:R* - R*, 4R™ - R",
b, b,:PS(L,R")x PS(LR") > R..

Definition 2.2: A pair (f,h) is said to be V-univex type I at X’ PS(I,R"), with respect
to @, @, bo, by, 1 such that for all xeA, we have

b, (X,X°) 4, Uf(t,x,x,X)dt - if(t,x",x‘),x‘))dt

(2.1)
5 tx,x,%x,x°%,x%,%%
zJ.F{T 0 0 0 T 0,0 O 2T 0 0 O }dt’
2 L7 (£, (tx7,X7,X5)-(Dn )f, (tx7. %7, X7) (D )f, (1x7,%7, X7))
- bl(x,x°)¢1j. h(t,x°,x°,x°)dt
) (22)

TF tx,%,%,x°%, x° X0 ,
> .
=2 7" (h (tx° X% %°)-(Dn"h, (tx° X%, X°)+D*n ), (tx° X°,%°))

If (2.1) is satisfied as a strict inequality then we say that a pair (f,h) is semi-strictly
V-univex type | at x° with respect to ¢,, @, bo, by, .

Remark
1. When ¢, ¢=1 and D’7=0, the concept of generalized univex-type | is the
same as that of BF-type | in Ref. 7.
2. When ¢, ¢=1, n(x,x%=1 and D?;=0, the same concept appeared in the
definition of (b,F)-convex functions in Ref. 17.

Definition 2.3: A pair (f,h) is said to be weakly V-strictly pseudoquasi univex type I
at x’e PS(I,R"), with respectto ¢@,, ¢, bo, by, n such that for all xeA, we have
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b fExxRdt < g, [F(LxC 5 Xt

0 ; t,X,X,X,XO, XO’XO;
= b, (XX )JF (<0
a 77T (fx (t1X0 1X01 XO)'(D 77T)fx (t,XO ,XO, XO)+(D277T)fX (t,XO ’)'(0’ XO))
b
- 4 [h(tx°X°,x°)dt < 0
b ty y.y”y 0"0"'0;
7" (h, (£x° X%, X°)-(D7")h, (tX°.X°, X°)+ (D7 )h, tx° %%, %%) | =

a

Definition 2.4: A pair (f,h) is said to be strongly V-pseudoquasi univex type | at x’e
PS(I,R™), with respectto @,, ¢, bo, b1, n such that for all xeA, we have

" b
B XX < g [ 5 5t

o b EXXRX, X0 X%
:bO(X’X)J.F T 0«0 0 T 0 o0 ;0 2. T 00 ;0 tSO’
n (F, (XX, %) (D )f, (67 X7, X°)+(Dn )f, (17, X7, X))

a

b
-4 j h(tx",u® x°,x°)dt < 0

o b EXX%XO, X0 X%
= b O et wos e e o0 0 ooy, LSO
2 L7 (h (tX7. X5, X)-(D )h, (6X7,X7, X7)+ (D77 )h, (1X7,X7, X7))

Definition 2.5: A pair (f,h) is said to be weakly V-strictly pseudo univex type I at x’e
PS(I,R"), with respect to ¢, ¢, bo, by, n such that for all xe A, we have

p b
b fExxdt < g [fEx" X %)t

on k| EXX%X%, X% X°;
:>bO(X’X )J'F T 0,0 0 T 0 o0 O 2. T 0,0 0 t<0
n (F (X %, X°)-(Dn ), (t,x",x°, X" )+(Dn ), (tx" X", X"))

a

b
- ¢1j h(tx°,u® %%, x%)dt < 0

on b | EXXRX%, X0 X%
= b, (x,x )JF t<O.
2 [0 (h @x° X%, X°)-(Dy ), (tx° X°, X°)+(D’n ), (tx° X°, X))
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Sufficient Conditions
In this section, we establish various sufficient optimality conditions for (MOP) under
generalized V-univexity type | conditions.

Theorem 3.1: Assume that x’cA is a feasible solution for (MOP) and assume that
there exists 1° e R*, 1° > 0, B° e PS(I,R™) such that the following relations hold
forall tel:

(AT (tX°X° )+ (1) h (tx° X% X°))-D(AYE, (tx° X X°)+B° (1) Th, (tx°X°,%%))

(3.1)

+D?(A%TF, (tx° x° . X°) + B2 () "h, (t,x°x° X)) =0,
A h(ex x° x%) =0, (3.2)
A1) >0, tel (3.3)

Further, assume that (f,8°(t)"h) is strongly V-pseudoquasi univex type | at x°
with respect to functions @,, ¢, bo, by, n with b, (x,x°) >0 for all x € A. Moreover,
suppose that ¢(0) >0 and a < 0 = ¢,(a) < 0. Then x" is an efficient solution for
(MOP).

Proof: If X’ is not an efficient solution for (MOP), then there exists x € A such that

b b
[ftxxdt < [f(Ex°x°x°)dt.

From (3.2), we have

Tﬂ" () Th(t,x° x°,x°)dt = 0.

Using ¢,(0) >0anda < 0 = ¢,(a) < 0, we get

%, ﬁf(t,x,X,X)dt-if(t,xo,xo,xo)dt} <0, (3.4)
'¢1Uﬂo(t)th(t,xo,xo,xo)dt} < 0. (3.5)

Since (f,5°(t)"h) is strongly V-pseudoquasi univex type | at x° with respect to
¢0’ ¢11 bOv bj_, n,

5 txx%,x% %% X%
dt < 0,

b, (X,X°) j F
7' (F, (tx° X%, x°)-Dn")f, (tx° X%, x°)+(D "), (6x° X", X7))

a
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tx,%,%,x%, x° %%
bl(X'X(’)j Fl 7" (B°(®)"h, (tx° X%, %°)-(Dn") B°(t)"h, (tx°,x°,X°) {dt < 0.
t | +D*T) B (O h, (£x° X°,X%))

Since b, (x,x°) >0, and 2° >0, we get

tx, X, %x%, x° x°:
b, (x,x°) j Fl 77 (A7F (t,x°X°,%%) - D" ) A", (tx° x°,%°) [dt <O, (3.6)
a + (DZUT)lOfo (t’XO’)'(O’XO))

tx,%,%,x%, x° %%
j Fl 7" (8°®) h, tx° %%, %X°) - (D" B° (1) h, (tx°x°,%°) dt < 0. (3.7)
T+ (D% (1) h (tx° X°,X%))

Since b, (x,x°) > 0, it follows that

tx,%,%,x%, x° %%
bo(x,x‘))j Fln" (B°()7h, (tx°x°,%°) - (Dn")B°()Th, (tx° x°,%°) [dt <O0. (3.8)
Y+ (D) B () h (tx° X%, X%))

Adding (3.6) and (3.8), we get
x5, %, %%, X X°;
7T (AT, (10 X%, %°) + (B°®)h, (tx° X, %%))
- (DA, (t,x° X%, %) + (B°(M)"h, (t,x°,x°,%X°%))
|+ (D) (AT, (X% X%, K%) + (B° (1) Th, (£x°,X°,X°)))

b
bo(X'XO)IF dt < 0,

which contradicts (3.1). Hence x° is an efficient solution for (MOP) and it completes
the proof.
In the next theorem, we replace strongly V-pseudoquasi univex type | by weakly

V-pseudoquasi univex type I of (f,5°(t)"h).

Theorem 3.2: Assume that x’cA is a feasible solution for (MOP) and there exists
A°eR¥, A% >0, B° ePS(I,R™) such that (3.1)-(3.3) of theorem 3.1 are satisfied.

Further, assume that (f,8°(t)"h) is weakly V-pseudoquasi univex type | at x° with
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respect to functions @,, @, bo, by, n with b,(x,x°)>0 for all x € A. Suppose that
#$(0)>0anda < 0 = ¢(a) < 0. Then x" is an efficient solution for (MOP).

Proof: If x°is not an efficient solution for (MOP), then there exists x € A such that

b b
[Ftxxdt < [H(Ex®x° %)t

From (3.2), we have

Tﬂ" (t)"h(t.x°,x° x%)dt = 0.

Using ¢,(0) >0anda < 0 = ¢,(a) < 0, we get

% {Tf(t,X,X,X)dt - jlf(t,xo,xo,xo)dt} <0
i ﬁ B (t)Th(t,x°,x°,x°)dt} <0.

Since (f,8°(t)'h) is weakly V-pseudoquasi univex type | at x° with respect to
¢0’¢11b0|b11n|
b t! !.l“! O! .O!“O;
bo(x,xo)J'F X,X,X, X", X", X

7' (f, (X7 X%, X)-(Dn "), (1x° X°,%°)+ (D7, (tx° X°, X))

a

dt <0,

X, XX
b, (xx°) [ F| " (8° ©"h, (tx" 5", %°) - (D7) (0"h, (tx° x°,X°) [dt < 0.
T OB O, (x5, K)

Remaining part of the proof follows on similar lines as that of theorem 3.1.
In the final sufficiency result below, we invoke the weak V-strictly pseudo univex

type | of (f,5°(t)"h).

Theorem 3.3: Assume that x’cA is a feasible solution for (MOP) and there exists
A°eR¥, A% >0, g% ePS(I,R™M) such that (3.1)-(3.3) of theorem 3.1 are satisfied.
Also, assume that (f,8°(t)"h) is weakly V-strictly pseudo univex type I at x° with
respect to functions ¢,, @, bo, b1, n with b,(x,x°)>0 for all x € A. Suppose that
#(0)>0anda <0 = ¢(a) < 0.Then x" is an efficient solution for (MOP).
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Proof: If X" is not an efficient solution for (MOP), then there exists x € A such that

b b
[Ftxxdt < [Hex®x° %)t

From (3.2), we have

[ 720 20t =0

Using ¢,(0) >0anda < 0 = ¢,(a) < 0, we get

% {Tf(t,X,X,X)dt - jlf(t,xo,xo,xo)dt} <0
-4} p° (t)th(t,x°,x°,x°)dt} <o

Since (f,5°(t)"h) is weakly V-strictly pseudo univex type I at x° with respect to
¢o’¢17 bo, b1, n,
t%,%,%,x°, X% X°;
bo(x,xo)J'F n' (f, (tx°x%,x°%) - (D7), (tx°x° x°) [dt<0, (3.9)
Y+ (D) (X0 X0, K0)

t%,%,%,x°, %%,%°;

b, (x.x°) [F| 77 (B°()7h, (tx° %%, %°) - (D7) A° O, (tX° X°,%°) < 0. (3.10)
Y+ (D) B () h (tXx° X°,%%))

From (3.9) and (3.10), we have
[ £%,%,%,x°, x° X°;
j F

dt<0, (3.11)
L (6 X 5O KO)-D N (6X° 5, KO)+(D T (6X° X0, %))

[ £,%,%,%,x°, X% X°:
jF 7T (B°(B"h, (t,x°x%,%%) - D7) BB h, (tx°x°,%°) dt<o0. (3.12)
|+ (D) () h, (X" X%, X))

(Since b, (x,x")>0, b,(x,x°)>0)
Since A° >0, (3.11) gives
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B XXX X0 X
IF T/ 40T 00 ;0 Ty 40T 0 o0 0 2 Ty 40T 0 o0 0 SO' (3'13)
2 |7 (A X X, X)-(Dn )A (X X, X)+HDn )AL X X,X)) | T

Adding (3.12) and (3.13), we obtain

[ ,%,%,%,x°%, X° X°;

TF 7T ((ATF, (X% X%, %%) + (B°(®)"h, (X%, %°, %))

2 | - O AT (XX, %) + (B0 Th, (tx° X%, X%))
|+ (D% ") (AT, (tx° X%, %°) + (B°(t) "h, (£x°,X°,X°)))

dt < 0,

which contradicts (3.1). Hence the result.

Mixed Type Duality
We divide the index set M of the constraint function of the problem (MOP) into two
distinct subsets, namely J, and J, such that J, U J, =M, and let e be the vector of

R* whose components are all ones. We consider the following mixed type dual for
(MOP):

(XMOP) Maximize jl[(f(t,u,u,u) + B, (t)Th™ (t,u,u,0)e]dt,

subject to x(a) = 0= x(b), 4.1)
X(a) = 0= x(b),
Tﬁ}z (th™ (t,u,u,u)dt >0, 4.2)

AT [, (tu(t),a(t).6(0) - DF, (Lu(),u(t),u(e)) + D, (tu(t) u(). i) |
+ AW®"[ h, (tu(t),u(t).u() - Dh, (.0, u(t) + D*h, (Lut),u(t),uc) | =0,
A eR,2>02e=1e=(11.1) e R", (>0, tel, (4.4)

(4.3)

We note that we get a Mond-Weir [15] type dual for J, =& and a Wolfe [22]
type dual for J, =& in (XMOP) respectively.

We prove various duality results for (MOP) and (XMOP) under generalized V-
univexity type I conditions.
Theorem 4.1: Let xe A and (u,4,8(t)) e B. Let any of the following conditions

holds:
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a. A>0, (f+p, () he B, (©)'h,) is strongly V-pseudoquasi univex type I at
u with respect to @, @,bobi,n with bi(x,u)>0 for all xeA. Also
a<0= g <0anda>0= ¢()>0.

b. (f+ 4, (®"h,e B, (©)h,) is weakly V-strictly pseudoquasi univex type I at u
with respect to ¢, @, bobin with by(x,u) > 0 for all xeA. Also
a<0=4¢g@ <0anda>0 = ¢()>0.

c. (F+p,®'h,e B, (0)h,) isweakly V-strictly pseudo univex type I at u with
respect to @, @, bobym with by(x,u)>0 for all xeA. Also
a<0 =>¢(@<0anda>0 = g(a)>0.

Then the following cannot hold:

Tf(t,x,x,sodt < jl[f(t,u,u,[j) + {6, ®h* (Lu,0,0)}e]dt.

Proof: Let x be feasible for (MOP) and (u,4,5(t)) be feasible for (XMOP). Suppose
that

Tf(t,x,x,sodt < jl[f(t,u,u,[j) + {6, ®h" (tu,0,0)}e]dt.

Since x is feasible for (MOP) and (u,4,4(t)) be feasible for (XMOP), we have

j-[f(t,x,)'(,X) +{p, (®Th™ (t,x,%,%)}e]dt < Jtl[f(t,u,u,[j) +{B, (®)Th* (t,u,u,i)}eldt.  (4.5)

Usinga>0 = ¢g(a) >0anda < 0 = g¢,(a) < Owith (3.1), we get

&, U[f('[,x,)'(,i(ﬁ{ﬂJl (OHLE (t,x,>'(,5()}e]dt—Jb.[f('[,u,l],u)+{,8Jl (t)Th™ (t,u,u,b)}eldt |< 0,

a a

- %Uﬂjz ©h™ (tx%%)dt | < 0.

Since (f+ 4, (0'h,e, B, ()Th,) is strongly V-pseudoquasi univex type I at u
with respect to @,, ¢, bo,bi,n
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[ t,%,%,%,u,0,U;

o [ 77 ((F, (bu,0,0) + e, ()7h,, (LU.0,0))
PO F oy ) + e, 07, quaay SO
|+ (D*7")(f, (tu,0,0) +ef, () 'h,, (tu,u,i))) |
. XX, X,u,u,u;

b, () F{ 77 (8, (©7h,,, (Lu6,)) - OB, ©7h,,, (tue.)) dt< o.

+(D*n")(B,, ©h,, (tu,0,u)

Since b,(x,u)>0and A >0, we get

[ t,%,%,%,u,0,U;

o | 7T ((ATF, (tU,0,0) + e, ()7, (tu,0,i)
o) 0 ) + o8, O Gusne) O o

|+ (D2 )(ATE, (U0 + e, (07h,, (tu0,0))) |

X t,x,%,X,u,u,u;
jF n" (B, (OTh, ,(tu,u,d)) - O7")(B, (©)h, ,(Lu,u,b)) [dt< 0. 4.7)
+(D*7")(B,, (O, (tu,0,0))

By b, (x,u) > 0, it follows that
. t,X,X,X,u,U,u;
bo(x,u)J'F n" (B, O, , (tu,0,d)) - (Or")(B, 1) h, ,(tu,o,i)) dt<o. (4.8)
+(D*7")(B,, ()" h,  (tu,0,0))

Adding (4.6) and (4,8), we obtain
XX, %,U,0,0;

7' (A", (Luu,u) + A0 h, (tu,o,u)
- (D" )(A ', (tu,u,a) + O h, (Lu,o,u)
|+ (D% ") (AT, (tu,u,0) + A h, (tu,0,0))) |

b
b, (X'u)j F dt <0,

which contradicts (4.1).
Now, by hypothesis (b) and from (4.2), (4.5), we get
b b

& J-[f(t,x,)'(,X)+{,BJl(t)Tth(t,X,X,X)}e]dt- j [f(t,u,U,U)+{ﬂJl(t)Tth(t,u,u,U)}e]dt <0,

a a
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b
— ¢| [ B, OTh* (txxu,0)dt | <o0.

Since (f+ 4, (1)'h,e, B, (0'h, ) is weak V-strictly pseudoguasi univex type I at u

with respect to @, @, bo,bi,n
t,X,X,X,u,0,U;
o | " (A, (tu,0,d) +eps, ()7h,, (tu,0,0))
bO(X’“)£ |- Oy, u ) + e, 07h,, (o)
|+ (D7) (AT, (tu,u,U) +ef, ()Th,, (Lu,0,1)) |

dt <0,

t,X,X,X,u,u,u;
bl(x,U)jF n' (B, (OTh, ,(tu,0,d)) - D7 )(B, (O)h, ,(tu,u,d)) [dt< 0.
+(D*n")(B,, (©"h,, (tu,0,0))

Since b,(x,u)>0and 4 > 0, we get
£, XX, X,u,0,U;
o | " (A, (tu,0,d) +eps, ()7h,, (tu,0,0))
b"(x’“)! |- Oy, u ) + e, 07h,, (o)
-+ (D% )(ATE, (Guub) + e, (O7h,, (tu,60)

dt <0, (4.9)

X t,x,%,X,u,u,u;
jF n" (B, (OTh, ,(tu,u,d)) - O7")(B, (©)h, ,(Lu,u,b)) [dt< 0. (4.10)

+(D*n")(B, (Ohy  (tu,0,)

By b,(x,u) > 0, it follows that

b tlxl)‘(,xlu,ulu;

bo (<U) [ F| 77 (B, (07, (L,0,0)) - (D77 )(B, (07hy, (tu,0i) < 0. (411)
+ (D)8, (7, o (bu,0,0)

Adding (4.9) and (4.11), we obtain
[ £,%,%,%,u,0,U;

n' (A, (tu,0,0) + A0 h, (tu,0,0))
- (D7")(ATF, (tu,0,0) + A1), (tu,0,0))
|+ (D7) (AT, (tu,0,0) + A0 h, (tu,u,0)) |

b
b, (X, ) j F dt < 0,
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which contradicts (4.1).

If (c) holds, then from (4.2) and (4.5), we get
& [ j [f(tx % %)+, ()h* X% X)}eldt- j [f(t,u,0,0)+3, (©h* (u,u,i)}eldt |< O,

- ¢1U B, () h™ (tx,x,u,u)dt | <0.

Since (f+p, (1)'h,e, B, ('h,) is weakly V-strictly pseudo univex type I at u
with respect to @, ¢, bo,bin

[ t,x,%,%,u,0,U; ]
o | 7" ((F, (tu,0,0) + e, (©h,, (tu,0,0))
D DIF 01y, ) + e, O, Gy O @12
|+ (D*7")(f, (Lu,0,0) +eB, ()'h,, (tu,0,6))

. t,X,X,X,u,u,u;
bl(x,U)j Fl 7" (B, (®"h,,(tu,0,0) - (D7 )(B, Oh,,(tu,o,d) dt< 0. (4.13)
+(D*7")(B, ®)'h, , (tu,u,0))

From (4.12) and (4.13), we get

[t,X,%,%,u,0,i;

o | 7" ((F, (tu,u,u) + e, ('h,, (tu,0,0))
| ivees 0Th uagy OGSO (4.14)
- (D )(f, (tu,o,u) +ep, (1) hy, (o)

|+ (D")(f, (tu,0,0) + eB, ()'h,, (tu,a,6))

X X .%,u,0,0:
_[F 7' (B, (©"hy, (tu,0,d)) - D7 )(B, M) h, , (tu,u,d) dt< 0. (4.15)
|+ (D*7")(B,, (O7h, 4 (t,u,0,0))

(Since b, (x,u)>0, b, (x,u)>0)
Because 4 > 0, (4.14) gives
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[t,x,%,%,u,0,U;
o | 7" (AT, (tu,a,d) +es, (0'h,, (tu,0,0))
jF o o . . dt<o, (4.16)
. |- (D )(Af tuud) +ep () h,,(tuu,u))
|+ (D7) (AT, (tu,0,0) + e, (1), (tu,0,0))
Adding (4.15) and (4.16), we get
[t,x,%,%,u,0,U; |
TF n ((leu(tT,u,U,U) .+“ﬂ(t) hu(:,u,ll,'u)). <o,
|- (On )4 f,(Lu,u,u) + () h,(tuu,i))
|+ (D*")(A7T, (tu,0,0) + A h, (tu,u,u))) |

which contradicts (4.1).

Corollary 4.1: (See [1] ) Let (u°,A°,B°(t)) be a feasible solution for (XMOP).
Assume that ) (t)"h, , (t,u®,0°,i°) = 0 and assume that u° is a feasible for (MOP). If

the weak duality theorem 4.1 holds between (MOP) and (XMOP), then u® is an
efficient solution for (MOP) and (u°,A°,4°(t)) is an efficient solution for (XMOP).

Necessary optimality conditions for the existence of an external solution for the
single objective variational problem subject to both equality and inequality constraints
were given by Valentine [21]. Invoking Valentine' [21] results, Hanson and Mond [9]
obtained corresponding necessary optimality conditions. Using the relationship
between the efficient solution of the problem (MOP) and the optimal solution of the
associated scalar control problem, the necessary optimality conditions were derived
for the multiobjective variational problems; details can be found in [6]. Fritz John
necessary optimality conditions derived in the form of (3.1)-(3.3) of theorem 3.1 with

A° >0, lead to Kuhn-Tucker type necessary optimality conditions under additional
constraint qualifications.

Theorem 4.2: (Strong Duality): Let x° be feasible solution for (MOP) at which the
Kuhn-Tucker constraint qualification is satisfied. Then there exists A° e R¥,

A° >0, A%"e=1, B°ePS(,RT) such that (x°,A°,B°(t)) is feasible for (XMOP)
with ) ('h,, (tu’,0°,0°) = 0.

If also the weak duality theorem 4.1 holds between (MOP) and (XMOP), then
(x°,A%,6°(t)) is an efficient solution for (XMOP).

Proof: Since x° is an efficient solution for (MOP) at which the Kuhn-Tucker
constraint qualification is satisfied. Then there exists 1° e R¥, 1° > 0, A% =1,
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S° €PS(ILR™) such that (3.1)-(3.3) of theorem 3.1 hold. Moreover, x° € A, hence
the feasibility of (x°,4°,4°(t)) for (XMOP) follows.

Also because weak duality holds between (MOP) and (XMOP), (x°,A°,4°(t)) is
an efficient solution for (XMOP).

If (x°,A°,8°(t)) is not an efficient solution for (XMOP), then proceeding along
the lines similar to those in Corollary 4.1 in [1], we a get a contradiction to weak

duality.

References

[1] Aghezzaf, B., Khazafi, K. (2004): Sufficient optimality conditions and duality
in multiobjective variational programming problems with generalized b-
invexity; J. Control Cyber., Vol. 33, pp. 1-14.

[2] Ahmad, I. and Gulati, T.R. (2005): Mixed-type duality for muitiobjective
variational problems with generalized (F.p)- convexity; J. Math. Anal. Appl.,
306, 669-683.

[3] Bector, C.R. and Singh, C. (1991): B-vex functions; J. Opt. Th. Appl., 71, 237-
253.

[4] Bector, C.R., and Husain, I. (1992): Duality for multiobjective variational
problems; J. Math. Anal. Appl., 166, 214-229.

[5] Bhatia, D. and Kumar, P. (1996): Duality for variational problems with B-vex
functions; Optimization, 36, 347-360.

[6] Bhatia,D. and Mehra,A. (1999): Optimality conditions and duality for
multiobjective variational problems with generalized b-vexity; J. Math. Anal.
Appl., Vol. 234, pp. 314-360.

[7] Bhatia,D. and Sharma,A. (2003): Duality with BF-type | functions for a class of
nondifferentiable multiobjective variational problems; J. Math. Anal. Appl.,
287, pp. 415-429.

[8] Chankong,V. and Haimes,Y.Y. (1983): Multiobjective decision making:
Theory and methodology; North Holland, New York.

[9] Hanson, M.A. and Mond, B. (1967): Duality for variational problems; J. Math.
Anal. Appl., 18, 355-364.

[10] Hanson, M.A. and Mond, B. (1982): Further generalization of convexity in
mathematical programming; J. Inf. Opt. Sci., 3, 25-32.

[11] Husain, I., Ahmed, A. and Mattoo, R.G. (2009): Optimality and duality for
multiobjective variational problems involving higher order derivatives; J. Appl.
Math. & Informatics; 27, pp. 123-137.

[12] Khazafi, K. and Rueda, N. (2009): Multiobjective variational programming
under generalized type | univexity; J. Opt. Th. Appl., Vol. 142, pp. 363-376.

[13] Mishra, S.K. and Mukherjee, R.N. (1994): On efficiency and duality for

multiobjective variational problems; J. Math. Anal. Appl., 187, 40-54.



Multiobjective Variational Problems 283

[14]

[15]

[16]
[17]
[18]
[19]
[20]

[21]

[22]

Mishra, S.K., Rueda, N. and Giorgi, N.G. (2003): Multiobjective programming
under generalized type I univexity; An. Univ. Bucur. Mat. 52, 207-224.

Mond, B. and Weir, T. (1981): Generalized convexity and duality, in
‘Generalized Concavity in Optimization and Eco.,”, (Eds.) S.Schaible and
W.T.Ziemba, Academic Press, New York, 263-279.

Mukherjee, R.N. and Rao, C.P. (2000): Mixed type duality for multiobjective
variational problems; J. Math. Anal. Appl., 252, 571-586.

Pandian,P. and Kanniappan,P. (1999): Duality for nonlinear programming
problems involving (b,F)-convexity; Opsearch, 36, 172-186.

Preda, V. (1992): On efficiency and duality for multiobjective programs”; J.
Math. Anal. Appl., 144, 365-377.

Vial, J.P. (1982): Strong convexity of sets and functions”; J. Math. Eco., 9,
187-205.

Vial, J.P. (1983): Strong and weak convexity of sets and functions”; Math.
Ope. Res., 8, 231-259.

Valentine, F.A. (1937): The problem of Lagrange with differentiable
inequalities as added side constraints; Contribution to the Calculus of
Variation, 1933-1937, Univ. of Chicago Press, Chicago, 407-448.

Wolfe, P. (1961): A duality theorem for nonlinear programming”; Quart.Appl.
Math., 19, 239-244.



