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Abstract 
 

In this paper, we propose an algorithm for the negative cycle detection 
problem. An algorithm for the negative cycle problem combines a shortest 
path algorithm and a cycle detection strategy. On a graph with n vertices and 
m edges, our algorithm runs in O(݊ଶ) time which is a better time bound for the 
case where n is much lesser than m. We use a cycle detection strategy which is 
a slight modification and culmination of the time out and walk to root 
strategies. This algorithm does not maintain a queue or stack of distance labels 
as the existing algorithms.  
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Introduction  
The shortest path problem with real(positive or negative)weights is the problem of 
finding the shortest distance from a specified vertex to all the vertices in the graph. 
Negative edge weights arise in a natural way when we reduce other problems to 
shortest-path problems. Negative weights are not merely a mathematical curiosity, on 
the contrary, they significantly extend the applicability of the shortest-path problems 
as a model for solving other problems. This potential utility is our motivation to 
search for efficient algorithms to solve network problems that involve negative 
weights. The negative cycle problem is to find a negative length cycle in a network or 
to prove that there are none. The Negative Cycle Detection problem has numerous 
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applications in scheduling, circuit production, constraint programming and image 
processing. For example, in some linear programming applications with constraints of 
the form ݔ௝ െ ௜ݔ  ൑  ܾ௞ called difference constraints, the problem has feasible solution 
if and only if the corresponding constraint graph has no negative cycle.  
 The previously known algorithms for the problem are based on the famous 
Bellman –Ford – Moore(BF) [1, 6, 10] algorithm whose time bound is O(nm), where 
n is the number of vertices and m is the number of edges. With the additional 
assumption that arc lengths are integers bounded below by െܰ ൑ െ2, the bound 
O(√݊ m log N) of Goldberg [8] improved the Bellman-Ford-Moore bound for very 
large N, where N is the absolute value of most negative arc length. The Goldberg - 
Radzik algorithm [7], an incremental graph algorithm of Pallottino [11], an algorithm 
of Tarjan[12] all perform well on some classes of shortest path problems. C-H. Wong 
and Y-C Tan [5] gave some heuristics that can be used to improve the runtime of a 
wide range of commonly used algorithms for the negative cycle detection problem 
significantly, such as Bellman – Ford - Tarjan algorithm, Goldberg - Radzik algorithm 
and Bellman-Ford-Moore algorithm with Predecessor Array. It runs in O(݊ଶm) worst-
case time. An O(n)-pass algorithm, called robust Dijkstra (RD) with bucket 
implementation and heap implementation was proposed by Cherkassky B.V. et.al.[3] 
which performed better than Wong and Tan’s methods on many of the classes of 
graphs.  
 Every labeling algorithm terminates after a certain number of labeling operations 
in the absence of negative cycles. If this number is exceeded, we can stop and declare 
that the network has a negative cycle. This strategy is called time out strategy. Our 
algorithm takes in to account the number of times a particular vertex becomes the 
scanning vertex. If this number exceeds 2 we declare that the graph has negative 
cycle. When the labeling operation is applied on an arc (u, v), the walk to root 
strategy follows the parent pointers from u until it reaches v or s. If we stop at v, then 
it declares the presence of negative cycle. Our algorithm uses this strategy and 
whenever it reaches v or s, it checks for the distance of v and s, we declare the 
presence of negative cycle of distance of s is less than zero or if v becomes the 
scanning vertex for the third time. At each iteration our algorithm has the information 
about the vertex with the minimum distance among all the scanned and labeled 
vertices.  
 
 
Definitions and Algorithmic Preparations 
Given a weighted directed graph G=(V,E), with V[G] the vertex set and E[G] the edge 
set,a weight function and a function         ݓ : E ՜R, mapping edges to real-valued 
weights. The shortest path problem is the problem of finding shortest distances from a 
specified vertex to all other vertices. The weight of the path p =(ݒ଴, ,ଵݒ … ,  ௞ሻ is theݒ
sum of the weights of its constituent edges:  

  wሺpሻ ൌ ∑ w ሺv୧ିଵ, v୧ሻ୩
୧ୀଵ  
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 The shortest path weight from a vertex u to v is defined by  

,ݑሺߜ    ሻݒ ൌ  ቄmin ሺwሺpሻሻ ׷ if there is a path from u to v.
∞                                              otherwise

 

 
 A shortest path from vertex u to vertex v is then defined as any path with weight 
w(p)=δ(u, v).  
 For a given graph G = (V, E), the shortest path is represented using π[v] which 
maintains the predecessor of vertex v. π[v] is either another vertex or NIL. 
Predecessor subgraph, ܩగ  ൌ ሺܸߨ,  ሻ induced by the π values gives the shortestߨܧ
path tree. Where ܸߨ is the set of vertices with non-NIL predecessors, plus the source 
and ߨܧ is the directed edge set induced by the π values for vertices in ܸߨ.  
 The process of relaxing an edge (u,v) consists of testing whether we can improve 
the shortest path to v found so far by going through u and, if so, updating d[v] and 
π[v]. If d[v] is greater than d[u] + w(u,v), then this process sets d[v] to d[u]+w(u,v) 
and updates π[v] to u.  
 For every vertex v, the algorithm maintains the following (i) distance from the 
source to v denoted by d[v] (ii) distance of a particular vertex in the previous iteration 
denoted by pd[v] (iii) the parent or the predecessor of the vertex v denoted by π[v] 
and (iv) the number of times a particular vertex has been scanned denoted by ns[v].  
 In addition, the algorithm puts all the vertices that have been newly labeled in a 
particular iteration in the set ‘Labeled-New’ and all the vertices which were labeled in 
the previous iterations are included in the set ‘Labeled-Old’.  
 In the next section we discuss the structure of the algorithm and give the proposed 
algorithm, the step by step analysis of the algorithm followed by proofs for 
correctness of the algorithm are done in section 3 and in the last section we compare 
the new algorithm with few well known algorithms.  
 
 
O(࢔૛ሻ Algorithm  
The Algorithm works as follows:  

1. It starts with initialization of d[v] and pd [v] to ∞,  π[v] to Nil and ns[v] to 0.  
2. The iteration procedure starts with d[s] set to 0, a variable source assigned as s 

and the two sets Labeled-Old and Labeled-New set to Empty.  
3. The For loop runs 2|ܸሺܩሻ| times, each time the loop is executed it does the      

following It checks for ns[source]൐2 or d[s]൏0. If either of them is satisfied 
the algorithm terminates as it has found the negative cycle. Otherwise, it starts  
labeling the other vertices only if it’s distance in the previous iteration or it’s 
previous distance is greater than the newly evaluated distance. At the end of 
every iteration the vertex with the minimum of all the distances is made the 
source for the next iteration. Once the set Labeled-Old becomes empty at the 
end of any iteration the algorithm terminates as it has obtained the solution.  
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Algorithm  
1. START  
2. For each ݒ א   ሿܩሾݒ
3. do d[v] ՚ ∞ 
4. pd[v] ՚ ∞ 
5. π[v] ՚NIL 
6. ns[v] ՚ 0 
7. End For  
8. d[s] ՚0 
9. source՚ s 
10. Labeled-New ՚ Empty  
11. Labeled-Old՚ Empty  
12. For i ՚1 to 2|ܸሺܩሻ|   
13. do ns[source] ՚ ns[source]+1 
14. min-d-old ՚ ∞ 
15. if ( ns[source] > 2 OR d[s] < 0) 
16. then display “NEGATIVE CYCLE DETECTED” 
17. Exit Loop and STOP 
18. End if 
19. For each v א Adj[source] 
20. do pd[v] ՚ d[v] 
21. if d[v]൐ d[source] + w(source,v)  
22. then d[v] ՚ d[source] + w(source,v)  
23. π[v] ՚source 
24. End if 
25. if pd[v] > d[v] 
26. then Labeled-New ՚ Labeled-New ׫ ሼvሽ 
27. Labeled-Old ՚ Labeled-Oldെሼvሽ 
28. min-d-new ՚  d[v] 
29. min-v-new ՚  v 

30. 
else min-d-new ՚  ∞ 

 31. if(min-d-new < min-d-old)  
32. then min-d-old ՚ d[v] 
33. min-v-old ՚ v 
34. End if  
35. End For  
36. if ( min-v-old = source ) 
37. then ns[source] ՚ ns[source] െ1 
38. i՚ iെ1 
39. End if 
40. For each v א

 
Labeled-Old 

41. do if ( min-d-old > d[v] ) 
42. then min-d-old՚  d[v] 
43. min-v-old ՚ v 
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44. End if  
45. End For  
46. source ՚ min-v-old 
47. Labeled-Old ՚ Labeled-Old ׫ Labeled-New ← 
48. Labeled-New ՚ Empty  
49. if ( Labeled-Old = Empty ) 
50. then display “SOLUTION FOUND” 
51. Exit loop and STOP 
52. End if 
53. Labeled-Old ՚ Labeled-Old െሼ݁ܿݎݑ݋ݏሽ 
54. End For 
55. STOP  

 
 
Analysis of the algorithm  
Lines 2 -7 initializes the values d[v],pd[v],π[v] and ns[v] for every vertex v in V. This 
takes O(n) time, where n is the number of vertices in G. As the iteration starts, say in 
݅௧௛  

iteration, the vertices labeled are put in the set Labeled-New and these vertices are 
mixed with those in Labeled-Old ݅ ൅ 1௧௛ iteration. There is total of 2n iterations given 
by the for loop in line 12, min-d-old(minimum distance in previous iteration) is a 
variable that is introduced in line 14 to hold the minimum distance from the source to 
the vertex v, that will be scanned in the next iteration. At the beginning of each 
iteration this variable is set to ∞ so that the minimum of the newly labeled vertices 
can be found, it will give the correct minimum distance at the end of the iteration.  
 The algorithm checks for the situations where either, the number of times a 
particular vertex is scanned exceeds 2 or the distance of the source becomes less than 
0. When either of this is satisfied, a ‘negative cycle has been detected’ and the 
algorithm stops. The case where these conditions are not satisfied, then we proceed to 
the first inner ‘for loop’, for each vertex adjacent to the vertex being scanned we have 
one iteration. At the beginning of the iteration, before d[v] undergoes a change it is 
saved in pd[v], as the previous distance. The edge (source,v) is relaxed. After 
relaxation process, if there is any change in d[v], that is if it has lost some distance 
then it can become a scanning vertex again. If there is no change in d[v] after 
relaxation then the variable min-d-new (minimum distance in the current iteration) is 
set to ∞, this ensures that the value of min-d-new of the previous iteration is not 
carried forward, and the variable is min-v-new (vertex at minimum distance from 
source in the current iteration) is not updated.  
 After the complete execution of the first inner for loop, the second inner for loop 
starts at the end of which the minimum of all the labeled vertices can be obtained and 
stored in min-d-old and the corresponding vertex is stored in min-v-old(vertex at a 
minimum distance from source in the previous iteration). Now, the next vertex to be 
scanned is given by min-v-old and it is assigned to the variable source. The newly 
scanned vertices are combined with those in the Labeled-Old set, this new set now 
becomes the Labeled-Old set for the next iteration. When all the vertices have 
obtained the correct label, which happens in the absence of negative cycle, the set 
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Labeled-Old becomes empty, when it is satisfied, the solution is reached and the loop 
is exited. The inner for loops put together run n-1 times, because those vertices which 
are in Labeled-New does not belong Labeled-Old, in the worst case the total number 
of times the inner loops run is (n-1) times. The outer for loop runs 2n number of 
times. Hence the algorithm runs in O(݊2) time.  
 
Proof of Correctness  
Lemma 3.1: Let G be a graph with source ‘s’, after a finite number of labeling 
operations if d[s]൏0 then G contains a negative cycle.  
 
proof:  
Let us observe that the parent of any vertex has a finite distance label and all vertices 
with finite distance label has parents except for the source s. The source s can have a 
parent if and only if d(s) ൏0. Suppose d[s] ൏0, we shall prove that the graph has a 
negative cycle reachable from s. Since there is a path from source to any vertex in G, 
thus there is a path from source s to π[s],say p, since π is the parent of s, the path p 
along with the edge(π[v],s) forms a cycle in G. If lis the length of the path from s to 
π[s], let us name the vertices on the path as ݒ଴, ,ଵݒ … ,  ଴ is the source s andݒ ௟  whereݒ
 ௟  is the vertex π[s]. The vertex vl became the parent of s after the relaxation of theݒ
edge (ݒ௟ , ݒ଴), so d[s] is nothing but d[ݒ௟ ]+ w(ݒ௟ , ݒ଴). 
 Since d[s] < 0  
  d[ݒ௟ ]+ d[ݒ௟ିଵሿ + w(ݒ௟ିଵ,   ௟ )<0.  (1)ݒ
 
now ݒ௟ିଵ  is the parent of ݒ௟ , d[ݒ௟ ሿ is  d[ݒ௟ିଵሿ + w(ݒ௟ିଵ,   ௟ ), thus (1) becomesݒ
  d[ݒ௟ିଵሿ + w(ݒ௟ିଵ,   0 > (଴ݒ , ௟ݒ)௟ )+ wݒ
 
continuing in this way, we get,  
   wሺݒ଴ , ଵሻݒ ൅  wሺݒଵ , .ଶሻ൅ݒ . . ൅wሺݒ௟ିଵ, ௟ ሻݒ ൅    wሺݒ௟ , ଴ሻݒ ൏ 0 
 
that is, 
  ∑ ,௜ିଵݒሺ ݓ ௜ሻ௟ାଵݒ

௜ୀଵ ൏ 0 where ݒ௟ାଵ ൌ  ଴ݒ
 
 The weight of the cycle is negative. Hence the proof.  
 
Lemma 3.2: Let G be a graph with source ‘s’, for any v ്s, if v becomes a scanning 
vertex more than twice, that is if ns[v] > 2 then G contains a negative cycle.  
 
Proof: Let us assume that ݒ଴ is the vertex which becomes the scanning vertex for the 
third time and assume it is not in a negative cycle. Let ݒ଴be in a cycle. Let l be the 
length of the cycle, and ݒ଴, ,ଵݒ … ,  ௟  , thenݒ = ଴ݒ ௟  are the vertices in the cycle whereݒ
the weight of the cycle is given by ∑ ,௜ିଵݒሺ ݓ ௜ሻ௟ݒ

௜ୀଵ . Assume that  

  ∑ ,௜ିଵݒሺ ݓ ௜ሻ௟ݒ
௜ୀଵ ൐ 0 

 
 When the cycle is traversed for the second time starting from v0, when it reaches 



A Faster Negative Cycle Detection Algorithm 313 
 

 

the vertex ݒ଴, d[ݒ଴ሿ is compared with d[ݒ଴ሿ+ ∑ ,௜ିଵݒሺ ݓ ௜ሻ௟ݒ
௜ୀଵ . Since the weight of 

the cycle is positive, we have  

  d[ݒ଴ሿ ൏ d[ݒ଴ሿ+ ∑ ,௜ିଵݒሺ ݓ ௜ሻ௟ݒ
௜ୀଵ  

 
 Hence, d[ݒ଴ሿ does not undergo any change once it reaches the minimum, which is 
a contradiction to the fact that it becomes the scanning vertex for the third time and it 
is not in a negative cycle. So ݒ଴is in a negative cycle. Hence the proof.  
 
Theorem 3.3: Given a weighted graph G=(V,E), in 2n iterations the algorithm either 
detects a negative cycle or gives a shortest path.  
 
Proof: From Lemma 3.2, it is clear that a vertex can be scanning vertex at most twice, 
and from Lemma 3.1 if source becomes a scanning vertex then there must be a 
negative cycle. Therefore each vertex can become a scanning vertex only twice, 
excluding the sink or destination. Hence in 2n iterations either one of the conditions 
stated in lemma 3.1 or lemma 3.2 gets satisfied in the presence of a negative cycle. In 
the absence of a negative cycle, the solution is obtained within the 2n iterations.  
 
Examples  
The algorithm was applied on the following problem from the book ‘Introduction to 
Algorithms,by Cormen, T. H.,et.al.(2001)[4]. The first problem is finding shortest 
path in the graph shown in fig.1. This graph does not contain a negative cycle and the 
result obtained after implementing the new algorithm was found to be correct.  
 The second problem is finding shortest path in the graph shown in fig.2. This 
graph does contain a negative cycle and the algorithm could detect the negative cycle 
in 7 iterations of the outer For loop.  

 

 
 

Figure 1: Network with Negative weights. 
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Figure 2: Network with Negative Cycle. 
 
 
Comparison with few algorithms  
In this section we compare the worst case time bounds of the few existing algorithms 
with the new algorithm. We have chosen few arbitrary values for n,m and N, where N 
is the absolute value of the most negative edge weight. The Bellman Ford Algorithm 
runs in O(nm) time, the algorithm by A.V.Goldberg runs in O(√݊ m log N) time. The 
algorithm given in this work has O(n

2
) bound. The following table gives the 

comparison between the above mentioned algorithms, where we have found the worst 
case time for the algorithms, in practice these algorithm can even take lesser time than 
the evaluated values to produce the result.  
 Here BF represents the Bellman-Ford algorithm. Observe that for the networks 
where, m is greater than or equal to 2n, the new algorithm is always faster than 
Bellman-Ford algorithm. When compared with Goldberg algorithm, we see that, as 
given in the second case (*), the new algorithm is a better one only when the value of 
N is very large. But, for the cases were m is much larger than n, the new algorithm is 
faster than the other algorithms.  

 
 

Table 1: Relative performance of BF, Goldberg and the new algorithm. 
 

S. No. n  m  N  BF(nm)  Goldberg (√n m log N) New Algorithm (n2)
1  5  10  15  50  26.2982  25  
2  50  150  *250 7500  2543.3995  2500  
3  500  25000 4  12500000  336561.7668  250000  
4  8193  24576 5  201351168 1554859726  134234112  
5  16386 65537 3  1073889282 4002688528  536969220  
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Concluding Remarks  
In this work we have introduced a negative cycle detection algorithm. We have shown 
by numerical examples that for reasonable sized graphs our algorithm outperforms the 
existing algorithms. We have compared our algorithm against the most efficient 
alternative like Goldberg’s algorithm. The numerical examples suggest that the 
algorithm outperforms the other algorithms only under the conditions that either the 
number of edges ‘m’ is much larger than the number of vertices ‘n’ or the absolute 
value of most negative arc length ‘N’ is very large. This work can be extended to 
obtain a better algorithm which would overcome these limitations.  
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