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Abstract 
 

In this paper we give some new type of transformations based on component 
moving techniques using which we can obtain various types of graceful trees 
from a given graceful tree of certain type and as a consequence of this new 
graceful transformations, we show that all lobsters with each vertex excluding 
one end vertex of the central path attached to an even number of branches with 
equal number of odd, even and pendant vertices is graceful. 
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Definition 1.1 
The notion of β -valuation was first introduced by Ringel, Kotzig-Rosa [5,16,17] 
Let G be a graph with q edges. A one-one function f from the set of vertices )(GV  to 
the set { }q....,,.........,2,1,0  induces an edge labeling where each edge { }vu,  is assigned 
the label )()( vfuf − . f is called a valuation−β  or a graceful labeling if the induced 
edge labels are distinct. Thus the set of all edge labels must be { }q..,.........2,1 .A graph 
which has a graceful labeling is called a graceful graph. In case of a tree as the 
number of vertices exceeds the number of edges by one, then a graceful labeling f is 
also onto and hence a bijection.  
 
Definition 1.2 
Transfer of 1st type 
A transfer in which the labels of the transferred vertices constitute integers is called a 
transfer of the 1st type. 
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( )Tv  be two components incident on a where )()( TvTub ∪∉ . Then the following 
hold: 
• If )()()()( bfafvfuf +=+ Then the tree ∗T obtained from T by moving the 

components ( )Tu  and ( )Tv  from a to b is also graceful. 
• If )()()(2 bfafuf +=  then the tree ∗∗T obtained from T by moving the 

component ( )Tu  from a to be is also graceful. 
 
Lemma 1.2 
In a graceful labeling f of a of a graceful tree T, let 

),........2,1,,,.......,2,1,,(
,........2,1,,,.......,2,1,

21

21

rbbbbraaaalyrespective
pbbbbpaaaa

+−−+++
+++−−−

 

 Be some vertex labels. Let the vertex a be attached to a set A of vertices (or 
components) having labels pnnnn +++ ,.......,2,1,  (different from the above vertex 
labels) in f and satisfying either baipnin +=−++++ )()1( or 

baipnin +=−−+++ )1()( , ⎥⎦
⎤

⎢⎣
⎡ −

≤≤
2

10 pi . Then the following hold. 

• By making a transfer ba → of the first type, we can keep from A and odd 
number of elements at a and more the rest to b such that the resultant tree then 
formed will be graceful. 

• By making a sequence of transfer of the first type 
zbababa ,.......2211 →+→−→+→−→→

)........2211,( zbababaeyrespectivl →→−→+→−→+→→  
 
 Where ),( 2121 rborrazlyrespectivepborpaz −+=+−=  an odd number of 
elements from A can be kept at each vertex of the transfer, such that the resultant tree 
then formed will be graceful. 
 
Notation 2.1 
For the transfer njaaaaJ j

kj
jjj

j ≤≤→→→→ 1,...........: )()(
3

)(
2

)(
1  by the notation  

".........:" 321 nTTTTR →→→  we mean the transfer r 
 
Theorem 2.1 
Let the tree T, the vertices 10, piia ≤≤− and 20, pjjb ≤≤+ (respectively 

10, riia ≤≤+  and 20, rjjb ≤≤− ), the set A and the properties satisfied by A be the 
same as in Lemma 2.1.Consider the transfer 

zbaba →→+→−→→ ,.......11  
)........11,( zbabaeyrespectivl →→−→+→→ , 

 
 With 21 pborpaz +−= ),( 21 rorbraeyrespectivl −+ ,such that R is partitioned as 
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Notation 
A combination y branches incident on any ix , 10 mi ≤≤ can be represented by a triple 
(x, y, z), where x, y and z represent the number of odd, even and pendant branches, 
respectively, incident an ix Here we use the symbols e, o, and *o to represent a non-
zero even-number an odd number, and an odd number greater than or equal to 3 
respectively. 
 For example: (e,0,o) means an even number of odd branches, no even branch and 
an odd number of pendant branches. If in a triple e or o appears more than once then it 
does not mean that the corresponding branches are equal in number, for example 
(e,e,o) does not mean that the number of odd branches i.e. equal to the number of 
even branches. In the lobster appears in fig-1, the vertex 0x is attached to combination 
(0,e,e), 1x  is attached to (0,e,e), 2x is attached to (0,0,o), 3x  is attached to (e,o,0), 4x  
is attached to (0,0,0), 5x  is attached to (o,0,o), and 6x is attached to (e,e,e). 
 
 
Results 
Definition 
Let G be a labeled tree with vertices a,b,a-1,b+1,a-2,b+2,a-3,b+3 or (a,b,a+1,b-
1,a+2,b-2,a+3,b-3) where a and b are distinct integers  
 
OD6TF 
A sequence of transfer a→b+1→a-1→b→a-2→b+2→a-3 ( respectively, a→b-1
→a+1→b→a+2→b-2→a+3) is of first types called odd dominated six transfer of 
first type or (OD6TF) from a→a-3 (respectively, a→a+3) 
 
ED6TF 
A sequence of transfer a→b+1→a-2→b→a-1→b+2→a-3 (respectively, a→b-1
→a+2→b→a+1→b-2→a+3) of first type is called an even dominated six transfer 
of first type of (ED6TF) from a→a-3 (respectively, a→a+3) 
 
2J6TF 
A sequence of transfers a→b+1→a-2→b+2→a-3 (respectively, a→b-1→a+1→
b-2→a+3) of first type is called a two jump six transfer of 1st type or (2J6TF) from a
→a-3 (respectively, a→a+3) 
 
7TF 
A sequence of transfer of first type  a→b+2→a-2→b→a-1→b+2→a-3 
(respectively, a→b-2→a+2→b→a+1→b-2→a+3→b-3) is called a seven transfer 
of 1st type or 7TF from a→b+3 (respectively, a→b-3) 
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(respectively a and a+2, and odd number of vertices at each of the vertices 
1,2,1, −++ aandbbb (respectively 1,2,1, +−− aandbbb ) and the resultant 

tree thus formed is graceful. 
• By carrying an ED6TF from 3−→ aa (respectively from 3+→ aa ) we can 

keep an even number of vertices at each of the vertices label 
)2,1,1,(21,1, −−+++− bbaaeyrespectivlbandbaa and an odd number of 

vertices at )2(2 +− aandblyrespectiveaandb  and the resultant tree thus 
formed is graceful. 

• By carrying a 2J6TF from 3−→ aa (respectively from 3+→ aa ) we can keep 
an even number of vertices at )2(2 −+ bandaeyrespectivlbanda and an odd 
number of vertices at 11(11 −++− bandalyrespectivebanda  and no vertex 
at )2(2 +− aandbaandb and the resultant tree thus formed is graceful. 

• By carrying a 7TF from 4+→ ba (respectively from 4−→ ba ) we can keep 
an odd number of vertices at each of the vertex 

)32,(32, ++−− aandabeyrespectivlaandab and an even number of vertices 
at 2,1,1,(2,1,1, −−+++− bbaalyrespectivebbaa  and the resultant tree thus 
formed is graceful. 

 
Proof (a) 
Here each transfer will be a transfer of the first type 
 Let us first consider the transfer )1(1 −→+→ balyrespectiveba  

 Here we observe that ,1)()2( ++=−++++ baipnin ⎥⎦
⎤

⎢⎣
⎡ +

≤≤
2

10 pi . 

 Therefore at a we keep the vertices n, n+1 and the pairs ipnin −+++ ,2 , 
11.,..........2,1,0 ≥−= kki  

 The vertices which are transferred to the vertex 1−b will be of the form 
},..........3,2{ kpnknkn −+++++ with 

  ibaikpnikn ∀++=−−+++++ 1)()2(  
 Now, consider the transfer 11 −→+ ab  
 Excluding the vertex kpn −+ , the remaining vertices can be paired whose sum

ba +=  
i.e. we have ieachforbaikpnikn +=−−−+++++ )1()2(  
 
 Therefore we keep an odd number of vertices at 1+b , namely 

1,2, −−−++++−+ ikpniknkpn  for desired i , and transfer the rest to the vertex 
1−a  for 1,1.,..........2,1,0 11 ≥−= kki  

 The set of vertices which are transferred to the vertex 1−a will be of the form,  
 { }111 1.,.........3,2 kpnknkn −−+++++  
 With the condition that baikpnikn +=−−−+++++ )1()2( 11  
 Consider the transformation ba →−1 excluding the vertex 11 −−+ kpn
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remaining vertices can be odd number of vertices at 1−a namely 
ikpniknkpn −−−++++−−+ 2,2,1 111  for some desired i  and transfer the rest 

to the vertex b  
 The set of vertices which are moved to the vertex b will be of the form 

221 2..............,.........12,2 kpnknkn −−++++++ . Consider the transfer of 
2−→ ab excluding the vertex 2kpn −+ the remaining vertices can be paired whose 

sum is 2−+ ba . Therefore at b we keep an odd number of vertices namely 
ikpniknkpn −−−++++−−+ 222 3,2,2 for 1,1................2,1,0 22 ≥−= kki and 

transfer the rest to 2−a . 
 The set of vertex which are transferred to the vertex 2−a  is of the form 
{ }333 3.,,.........3,2 kpnknkn −−+++++  
 Next consider the transfer 22 +→− ba . 
 Excluding the vertices 333 4,32 knknandkn ++++++ the remaining vertices 
can be paired whose sum equal to ba + . 
 We keep an even number of vertices at 2−a , namely 

,3,4,3,2 3333 ikpniknknkn −−−++++++++ for
1,1..,.........2,1,0 44 ≥−= kki  

at 2−a and transfer the rest to the vertex 2+b . 
 
 The set of vertices which are moved to the vertex 2+b is 
{ }444 3.......,.........5,4 kpnknkn −−+++++  
 Excluding the vertex 43 kpn −−+  the remaining vertices can be paired when 
sum 1−+= ba  
 So we carry out the transfer 32 −→+ ab  keeping the vertices 32 −→+ ab  
keeping the vertices ikpniknkpn −−−++++−−+ 444 4,4,3  for some desired i  
and transfer the rest to the vertex 3−a .So in this way we carried out a sequencing 
transfer keeping desired number of vertices at each vertex of the transfer. 
 
Proof (b) 
Here each transfer will be a transfer of the first type 
 Let us first consider the transfer )1(1 −→+→ balyrespectiveba  

 Here we observe that ,1)()2( ++=−++++ baipnin ⎥⎦
⎤

⎢⎣
⎡ +

≤≤
2

10 pi . 

 Therefore at a we keep the vertices n, n+1 and the pairs ipnin −+++ ,2 , 
11.,..........2,1,0 ≥−= kki  

 The vertices which are transferred to the vertex 1−b will be of the form 
},..........3,2{ kpnknkn −+++++ with 

  ibaikpnikn ∀++=−−+++++ 1)()2(  
 Now, consider the transfer 21 −→+ ab  
 Excluding the vertices, 1, −−+−+ kpnkpn , the remaining vertices can be 
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paired whose sum 1−+= ba  
i.e. we have ieachforbaikpnikn 1)2()2( −+=−−−+++++  
 
 Therefore we keep an even number of vertices at 1+b , namely 

ikpniknkpnkpn −−−++++−−+−+ 2,2,1,  for 1,1.,..........2,1,0 11 ≥−= kki  
 And transfer the rest vertices to the vertex 2−a  
 The set of vertices which are transferred to the vertex 2−a will be of the form,  
 { }2.,.........12,2 111 −−++++++ kpnknkn  
 With the condition that 2)3()2( 11 −+=−−−+++++ baikpnikn  
 Consider the transformation ba →− 2 excluding the vertex 21 −−+ kpn
remaining vertices can be even number of vertices at ,2−a namely 

,........3,2,2 111 ikpniknkpn −−−++++−−+  for 1,1.......,.........2,1,0 22 ≥−= kki  
and transfer the rest to the vertex b  
 The set of vertices which are moved to the vertex b will be of the form 

222 3..............,.........12,2 kpnknkn −−++++++ . Consider the transfer of 
1−→ ab excluding the vertex 22 kn ++ the remaining vertices can be paired whose 

sum is 1−+ ba .i.e. 1)3()3( 22 −+=−−−+++++ baikpnikn  Therefore at b we 
keep an even number of vertices namely ikpnknkn −−−+++++ 3,......3,2 222 for 

1,1................2,1,0 33 ≥−= kki and transfer the rest to 1−a . 
 The set of vertices which are transferred to the vertex 1−a  is of the form 
{ }333 3.,,.........4,3 kpnknkn −−+++++  
 Next consider the transfer 21 +→− ba . 
 Excluding the vertices 33 43 knandkn ++++ the remaining vertices can be 
paired whose sum equal to 1++ ba .i.e. 1)3()5( 33 ++=−−−+++++ baikpnikn
w 
 We keep an odd number of vertices at 1−a , namely 

ikpniknknkn −−−++++++++ 3333 3,5,4,3 for 1,1..,.........2,1,0 44 ≥−= kki  
at 1−a and transfer the rest to the vertex 2+b . 
 
 The set of vertices which are moved to the vertex 2+b is 
{ }444 3.......,.........6,5 kpnknkn −−+++++  
 Excluding the vertex ikpniknkpnkpn −−−++++−−+−−+ 4444 5,5,4,3 ,  
 For 1,1............2,1,0 55 ≥−= kki the remaining vertices can be paired when sum

1−+= ba  
 So we carry out the transfer 32 −→+ ab  keeping the vertices 32 −→+ ab  
keeping the vertices ikpniknkpn −−−++++−−+ 444 4,4,3  for some desired i  
and transfer the rest to the vertex 3−a .So in this way we carried out a sequencing 
transfer keeping desired number of vertices at each vertex of the transfer. 
 By lemma * the resultant tree thus obtained is graceful.  
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Observation  
After the transfer ba →  of the first type in Lemma 1.2 the set 1A  of the components 
of A which are transferred to b  is of the form },....1,{ 11 rnrnrnA ++++=  with 

bairnirn +=−++++ )()( 1  for ⎥⎦
⎤

⎢⎣
⎡ −−

≤≤
2

10 1 rri  

(a) 1)1()( 1 −+=−−++++ bairnirn  and 
(b) 1)()1( 1 ++=−+++++ bairnirn  
 
 Therefore, next if we make a transfer )1(1 +→−→ alybrespectiveab , then the 
 Set 1A  and the vertices b and 1−a (respectively, b and a+1) 
 Satisfy the properties of the set A and the vertices a  and b respectively of  
 
Lemma1.2  
1.2 The vertices of the sequence of the transfer we deal in this paper have the property 
“P: for any three consecutive vertices u, v, w of the sequence of the transfer we have 
w=u≠ 1”. Because of the property “P” we can use Lemma 1.2 and part (a) of this 
observation, repeatedly and keep an odd number of components at each vertex of the 
transfer. 
 
Lemma 2.2 
Let the tree T, the vertices 10, piia ≤≤−  and 20, pjjb ≤≤+ (respectively, 

10, riia ≤≤+  and 20, rjjb ≤≤− ,the set A be the same as Lemma 2.1. Consider the 
transfer T1  from ua → ,where T1  may be a transfer of first type or any transfer of 
type 
 OD6TH,ED6TF, 2J6TH, 7TF and u is the vertex b  if T1  is of first type 3−a  if T

1 is a 
 OD6TH,ED6TF or 2J6TH and is the vertex 3+b  if T1  is a 7TF. Let A1 ⊂  A be 
the set of vertices transferred to u  after the transfer T1  and v  be the vertex appears 
next to u  in the sequence ,...)2,2,1,1,,( +−+− bababa  (respectively 

,...)2,2,1,1,, −+−+ bababa  
 
 Then the set A1  and verices u  and v  satisfy the properties of the set A and 
vertices a and b  respectively, of Lemma 1.2 or 2.1. 
 
Proof of Lemma 2.2  
If T1  is the transfer of the first type then the Lemma holds by observation 1.1(a),since 
each derived transfer is a sequence of transfer of first type, the set A1  consists of 
consecutive integers, say A1={ isnsnsn +++++ ,....1, }.If T1  is a OD6TF,ED6TF 
or2J6TF, u is the vertex a-3(respectively,a+3). One notices from the proof of Lemma 
2.1 (a),(b),(c),the set A1satisfies the condition 



344  Sushant Kumar Rout et al 
 

 

)1,(1)()( 1 ++−+=−++++ balyrespectivebaisnisn  

 Where ⎥⎦
⎤

⎢⎣
⎡ −−

≤≤
2

10 1 ssi .By re-pairing the elements of A1 ,we get, for

⎥⎦
⎤

⎢⎣
⎡ −−

≤≤
2

10 1 ssi , ,()1()1( 1 lyrespectivevubasnisn +=+=−+++++

))1()( 1 vubaisnisn +=+=−−++++  
 If T1  is a 7TF then u is the vertex ).3,(3 −+ blyrespectiveb from the proof of the 

Lemma 2.1(d), we have ⎥⎦
⎤

⎢⎣
⎡ −−

≤≤+=−++++
2

10,)()( 1
1

ssiwherebaisnisn .  

 By re-pairing the elements of A1 , we get for ⎥⎦
⎤

⎢⎣
⎡ −−

≤≤
2

10 1 ssi ,

)1)()(,(1)1()( 11 vubaisnisnlyrespectivevubaisnisn +=++=−+++++=−+=−−++++
Hence the result. 
 
 
Application 
1.1 In this paper we give conditions under which the transfers can be used repeatedly 
so as to obtain different type of graceful trees. 
 As an application of this graceful transformation we give graceful labeling to a 
class of lobsters with the following characteristic features. Each vertex nixi <<1,  of 
the central path in attached to even number of branches with equal number of odd, 
even and pendant branches. 
 The non pendant branches incident on the central path are either all odd branches 
or even branches. 
 
1.2 The number of vertices in the central path is 16]1[ 6 +Kor where k is a positive 
integer 
For each the integer the vertices 46366616 , ++++ rrrr xandxxandx  are attached to odd 
no of branches, and 5626 ++ rr xandx are adjacent to no branch. 
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