A Subclass of Analytic Functions

B.S. Mehrok¹, Gagandeep Singh² and Deepak Gupta³

¹# 643 E, B.R.S. Nagar, Ludhiana (Punjab), India
²Department of Mathematics, Miri Piri Khalsa College, Bhadour, Dist.
 Barnala(Punjab), India
 E-mail: kamboj.gagandeep@yahoo.in
³Dept. of Mathematics, M.M.University Mullana-Ambala (Haryana), India

Abstract

Let \(S(A, B) \) denote the class of functions \(f(z) = z + \sum_{k=2}^{\infty} a_k z^k \), regular in the unit disc \(E = \{ z : |z| < 1 \} \) and satisfying the condition

\[
\frac{f(z)}{g(z)} \prec 1 + \frac{A z}{1 + B z},
\]

where \(A \geq -1 \) and \(B \leq 1 \), \(z \in E \), where \(g(z) \) is starlike in \(E \). In this paper, we obtain the coefficient estimates, distortion theorem, argument theorem and radius of starlikeness for the class \(S(A, B) \).

Mathematics Subject Classification : 30C45.

Keywords: Subordination, Univalent functions, Starlike functions, Close-to-Star functions.

Introduction

Let \(U \) be the class of bounded functions

\[
w(z) = \sum_{k=1}^{\infty} c_k z^k
\]

which are regular in the unit disc \(E = \{ z : |z| < 1 \} \) and satisfying the conditions

\[
w(0) = 0 \quad \text{and} \quad |w(z)| < 1, \quad z \in E.
\]

Let \(S' \) denote the class of functions

\[
g(z) = z + \sum_{k=2}^{\infty} b_k z^k
\]

regular and starlike in \(E \).
Let \(S_1(\alpha, \beta) \) be the class of functions \(f(z) \) which are regular in the unit disc \(E \) and satisfy the condition
\[
\left| \frac{f(z)}{g(z)} - 1 \right| < \beta \left| \frac{\lambda f(z)}{g(z)} + 1 \right|, \quad z \in E, \ 0 \leq \lambda \leq 1, \ 0 < \beta \leq 1,
\]
where \(g(z) \) is regular and starlike of order \(\alpha \ (0 \leq \alpha < 1) \).

This class was studied by Goel and Sohi [3].

Let \(S(A, B) \) denote the class of functions
\[
f(z) = z + \sum_{k=2}^{\infty} a_k z^k\tag{1.3}
\]
regular in \(E \) and satisfying the conditions
\[
\frac{f(z)}{g(z)} < \frac{1 + Az}{1 + Bz}, \quad -1 \leq B < A \leq 1, \quad z \in E, \ g \in S^*. \]

Obviously \(S(A, B) \) is a subclass of close-to-star functions introduced by Reade [4].

Also \(S(1, -1) \equiv S_1(\alpha, \beta)(\lambda=1, \alpha=0, \beta=1) \).

By definition of subordination it follows that \(f(z) \in S(A, B) \), if and only if \(f(z) \) can be expressed in the form
\[
\frac{f(z)}{g(z)} = \frac{1 + Aw(z)}{1 + Bw(z)}, \quad w(z) \in U, \ -1 \leq B < A \leq 1, \ z \in E. \tag{1.4}
\]

To avoid repetition, we lay down once for all that \(-1 \leq B < A \leq 1, \ z \in E \).

The purpose of this paper is to study the class \(S(A, B) \) and obtain coefficient estimates, distortion theorem, argument theorem and radius of starlikeness.

Preliminary Lemmas

Lemma 2.1. Let
\[
\frac{f(z)}{g(z)} = P(z) = 1 + \sum_{k=2}^{\infty} p_k z^k, \tag{2.1}
\]
then
\[
|p_n| \leq (A - B), \quad n \geq 1. \tag{2.2}
\]

This lemma is due to Goel and Mehrok [1].

Lemma 2.2. If \(w(z) \in U \), then for \(|z| = r < 1 \),
\[
|zw'(z) - w'(z)| \leq \frac{r^2 - |w(z)|^2}{1 - r^2}. \tag{2.3}
\]

Singh and Goel proved this result in [5].

Lemma 2.3. Let \(p(z) = \frac{1 + Aw(z)}{1 + Bw(z)}, \ w(z) \in U \), then for \(|z| = r < 1 \),
A Subclass of Analytic Functions

93

\[
\text{Re} \left[Ap(z) + \frac{B}{p(z)} \right] + r^2 \frac{|Ap(z) - B|^2 - |1 - p(z)|^2}{(1 - r^2)|p(z)|}
\]

\[
\leq \left\{ \begin{array}{ll}
AB(A + B) r^2 - 4ABr + (A + B) & , R_i \leq R_0, \\
 \frac{2}{(1 - r^2)} \left[(1 - ABr^2) - (1 - A)(1 - B)(1 + Ar^2)(1 + Br^2) \right]^{1/2} & , R_i \geq R_0, A \neq 1,
\end{array} \right.
\]

where \(R_i = \frac{1 - Br}{1 - Ar} \) and \(R_0^3 = \frac{(1 - B)(1 + Br^2)}{(1 - A)(1 + Ar^2)} \).

The bounds are sharp.

Goel and Mehrok [2] established this result.

Coefficient Estimates

Theorem. 3.1. If \(f(z) \in S(A, B) \), then

\[
|a_n| \leq n \left[1 + \frac{(n-1)(A-B)}{2} \right], \quad n \geq 2.
\]

The bounds are sharp.

Proof. Using (1.2) and (1.3) in (2.1), we get

\[
z + \sum_{k=2}^{\infty} a_k z^k = \left(z + \sum_{k=2}^{\infty} b_k z^k \right) \left(1 + \sum_{k=1}^{\infty} p_k z^k \right).
\]

On equating the coefficients of \(z^n \) in (3.2), we have

\[
a_n = b_n + p_1 b_{n-1} + p_2 b_{n-2} + \ldots + p_{n-1}.
\]

Using (2.2), (3.3) yields

\[
|a_n| \leq |b_n| + (A - B) \left[|b_{n-1}| + |b_{n-2}| + \ldots + |b_2| + 1 \right].
\]

Also it is well known that \(|b_n| \leq n \), \(n \geq 2 \). Hence

\[
|a_n| \leq n \left[1 + \frac{(n-1)(A-B)}{2} \right].
\]

For \(n = 2 \), equality signs in (3.1) hold for the functions \(f_n(z) \) defined by

\[
f_n(z) = \frac{z}{1 - \delta z} \left(1 + A\delta z^{n-1} \right), \quad |\delta| = 1, \ |\delta_2| = 1.
\]

On putting \(A = 1, B = -1 \), we get the following result due to Reade [4].

Corollary. Let \(f(z) = z + \sum_{k=2}^{\infty} a_k z^k \) is close-to-star function, then

\[
|a_n| \leq n^2, \quad n \geq 2.
\]
Distortion Theorem

Theorem 4.1. If \(f(z) \in S(A, B) \), then for \(|z| = r \), \(0 < r < 1 \), we have

\[
\frac{r(1-Ar)}{(1-Br)(1+r)^2} \leq |f(z)| \leq \frac{r(1+Ar)}{(1+Br)(1-r)^2}.
\]

Estimate is sharp.

Proof. From (1.4), we have

\[
|f(z)| = |g(z)| \frac{|1+Aw(z)|}{1+Bw(z)}, \quad w(z) \in U. \tag{4.2}
\]

It is easy to show that

\[
\frac{1-Ar}{1-Br} \leq \frac{|1+Aw(z)|}{1+Bw(z)} \leq \frac{1+Ar}{1+Br}. \tag{4.3}
\]

Since \(g(z) \) is starlike, it follows that

\[
\frac{r}{(1+r)^2} \leq |g(z)| \leq \frac{r}{(1-r)^2}. \tag{4.4}
\]

Using (4.3) and (4.4) in (4.2), we obtain (4.1). For \(n = 2 \), the function \(f_n(z) \) defined by (3.4), gives sharp estimates.

For \(A = 1, B = -1 \), we have the following:

Corollary. Let \(f(z) \in S(1,-1) \), then for \(|z| = r \), \(0 < r < 1 \),

\[
\frac{r(1-r)}{(1+r)^3} \leq |f(z)| \leq \frac{r(1+r)}{(1-r)^3}.
\]

This result was proved by Goel and Sohi [3].

Argument Theorem

Theorem 5.1. If \(f(z) \in S(A,B) \), then

\[
\left| \arg \frac{f(z)}{z} \right| \leq 2 \sin^{-1} r + \sin^{-1} \frac{(A-B)r}{1-ABr^2}. \tag{5.1}
\]

The result is sharp.

Proof. It is easy to show that, the transformation

\[
\frac{f(z)}{g(z)} = \frac{1+Aw(z)}{1+Bw(z)}
\]

maps \(|w(z)| \leq r \) onto the circle.
A Subclass of Analytic Functions

\[
\left| \frac{f(z)}{g(z)} \right| \leq \left| \frac{1 - ABr^2}{1 - B^2r^2} \right| \leq \frac{(A - B)r}{1 - ABr^2}, \quad |z| = r.
\]

Therefore
\[
\left| \frac{f(z)}{g(z)} \right| \leq \sin^{-1} \left(\frac{(A - B)r}{1 - ABr^2} \right).
\]

Also
\[
\left| \frac{g(z)}{z} \right| \leq 2\sin^{-1} r.
\]

Since
\[
\left| \frac{f(z)}{z} \right| \leq \left| \frac{f(z)}{g(z)} \right| + \left| \frac{g(z)}{z} \right|.
\]

Using (5.2) and (5.3) in (5.4) follows. The result (5.1) is sharp for the function \(f_n(z) \) \((n = 2)\) defined by (3.4), where
\[
\delta_z = \frac{r}{z} \left[\frac{-(A + B)r + i \left((1 - A^2 r^2)(1 - B^2 r^2) \right)^{1/2}}{1 + ABr^2} \right].
\]

On putting \(A = 1, B = -1 \), we obtain the following result due to Goel and Sohi [3].

Corollary. Let \(f(z) \in S(1, -1) \), then
\[
\left| \frac{f(z)}{z} \right| \leq 2\sin^{-1} r + \sin^{-1} \frac{2r}{1 + r^2}.
\]

Radius of Starlikeness

Theorem. 6.1. Let \(f(z) \in S(A, B) \), then

For \(A_b \leq A \leq 1 \), \(f(z) \) is starlike in \(|z| < r_b \), where \(r_b \) is the smallest positive root of
\[
ABr^3 - B(2 + A)r^2 + (1 + 2A)r - 1 = 0;
\]

For \(-1 < A \leq A_b \), \(f(z) \) is starlike in \(|z| < r_1 \), where \(r_1 \) is the smallest positive root of
\[
B(1 - A)r^4 - 2B(1 - A)r^3 + (1 - 2(A - B) - ABr^2 - 2(1 - A)r + (1 - A) = 0;
\]

\[
A_b = \left(\frac{3 - \sqrt{5}}{2} \right).
\]

Results are sharp.

Proof. Differentiating (1.4) logarithmically, it yields
\[
\frac{zf'(z)}{f(z)} = \frac{zg'(z) + (A - B)zw'(z)}{g(z)} \quad (6.3)
\]

Taking the real parts on both sides of (6.3) and using lemma 2.2, we get

\[
\Re \left(\frac{zf'(z)}{f(z)} \right) \geq \Re \left(\frac{zg'(z)}{g(z)} \right) + (A - B) \left(\frac{zw'(z)}{g(z)} \right)
\]

\[
+ (A - B) \left[\Re \left(\frac{w(z)}{(1 + Aw(z))(1 + Bw(z))} \right) - \frac{r^2 - |w(z)|^2}{(1 - r^2) \left| (1 + Aw(z))(1 + Bw(z)) \right|} \right]. \quad (6.4)
\]

Put \(p(z) = \frac{1 + Bw(z)}{1 + Aw(z)} \), \(w(z) \in U \).

Then from (6.4), we have

\[
\Re \left(\frac{zf'(z)}{f(z)} \right) \geq \Re \left(\frac{zg'(z)}{g(z)} \right) + \frac{(A + B)}{(A - B)} \left(\frac{zw'(z)}{g(z)} \right)
\]

\[
- \frac{1}{(A - B)} \left[\Re \left(Ap(z) + \frac{B}{p(z)} \right) + \frac{r^2 A p(z) - B^2 [1 - p(z)]^2}{(1 - r^2) \left| p(z) \right|^2} \right]. \quad (6.5)
\]

Since \(g(z) \) is starlike, therefore we have

\[
\Re \left(\frac{zg'(z)}{g(z)} \right) \geq \frac{1 - r}{1 + r}. \quad (6.6)
\]

(6.5) together with (6.6) and lemma 2.3, yields

\[
\Re \left(\frac{zf'(z)}{f(z)} \right) \geq \frac{1 - (1 + 2A) r + B(2 + A)^2 - 3ABr^3}{(1 + r)(1 - Ar)(1 - Br)}, R_i \leq R_{0},
\]

\[
\geq \frac{-2[(1 - A) + (A - B) r + B(1 - A) r^2]}{(1 - A)(1 - B)(1 + Ar^2)(1 + Br^2)}^{1/2}, R_i \geq R_{0}, A \neq 1. \quad (6.7)
\]

On equating the right hand sides of (6.7) to zero, we get (6.1) and (6.2).

The equation \(R_i = R_0 \) yields

\[
ABr^3 - 2ABr^3 + (2A + 2B - AB - 1) r^2 - 2r + 1 = 0. \quad (6.8)
\]

Elimination of \(r \) between (6.1) and (6.8) leads to

\[
(1 + B)(BA^3 - 2BA^2 + 2A - 1) = 0. \quad (6.9)
\]

If \(1 + B \neq 0 \), we have
\[B = \frac{(2A-1)}{A^2(2-A)}, \quad A \neq 1. \]

Then \(B < A \) implies that \(0 < (1-A)^3(1+A) \) which holds.

Also \(B = \frac{(2A-1)}{A^2(2-A)} > -1 \) implies \(A < \frac{3-\sqrt{5}}{2} < 1. \)

For \(B = -1 \), elimination of \(r \) between (6.1) and (6.8) gives \(A^2 - 3A + 1 = 0. \)

Therefore \(A = \frac{3-\sqrt{5}}{2} = A_0 \), say.

By taking \(A = 1, B = -1 \), we have the following result.

Corollary. Let \(f(z) \in S(1,-1) \), then \(f(z) \) is starlike in \(\{|z| < r_2\} \) where \(r_2 \) is the smallest positive root of the equation

\[r^3 - 3r^2 - 3r + 1 = 0. \]

This result is due to Goel and Sohi [3].

References

