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Abstract 
 

This work consists of determination of unknown temperature and thermal 
deflection of thin circular plate with the stated conditions. The inverse heat 
conduction equation is solved by using Marchi-Fasulo transform and the 
results for unknown temperature and thermal deflection are obtained in terms 
of infinite series of Bessel's function and it is solved for special case by using 
Math-cad software and illustrated graphically by using origin software. 
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Introduction 
The inverse heat conduction problem is one of the most frequently encountered 
problems by scientists. The wide varieties of problems that are covered under 
conduction also make it one of the most researched and thought about problems in the 
field of engineering and technology. This kind of problems can be solved by various 
methods. These inverse problems consist of determination of unknown temperature 
and thermal deflection of solids when the conditions of temperature and deflection are 
known at the some points of the solid under consideration. Grysa and Cialkowski [1], 
Grysa and Koalowski [2] studied one-dimensional transient thermo elastic problems 
and derived the heating temperature and heat flux on the surface of an isotropic 
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infinite slab. Khobragade [3] and [4] discuss an inverse steady state and transient 
thermo elastic problem of thin circular plate and annular disc in Marchi-Fasulo 
transform domain. Deshmukh et.al [5] investigated inverse heat conduction problem 
of semi-infinite, clamped thin circular plate and their thermal deflection by quasi-
static approach. Tikhe and Deshmukh[6] introduced inverse problem of a thin circular 
plate and its thermal deflection. 
 In this work we modify the problem of Tikhe and Deshmukh [6] which consist of 
given temperature distribution on the interior surface of thin circular plate. In this 
work, the temperature, unknown temperature on outer surface and quasi-static thermal 
deflection due to unknown temperature g(z) are discuss. The inverse heat conduction 
equation is solved by using Marchi-Fasulointegral transform and the results for 
unknown temperature and thermal deflection are obtained in terms of infinite series of 
Bessel's function and it is solved for special case by using Math-cad software and 
illustrated graphically by using Origin software. 
 
 
Formulation of the problem 
Consider a thin circular plate of thickness 2h occupying the space

{ }2 2: ( , , ) 0 ,D x y z r x y a h z h≤ ≤ + ≤ − ≤ ≤ . Suppose the plate is subjected to 

arbitrary known interior temperature ( )f z within the region 0 r a≤ ≤  with third kind 
condition which assumes to be zero at upper surface z h=  and lower surface z h= − . 
Under these more realistic prescribed conditions, the unknown temperature on lower 
surface and quasi-static thermal deflection due to unknown temperature ( )g z are 
required to determine. The differential equations satisfying the deflection function as 
in Noda et. al [7] is given as 

 
4 21

(1 ) Tw M
Dν

−
∇ = ∇

−
 (2.1) 

 
where, the operator 2∇ is defined by 

 2
2

1
r rr

∂ ∂
∇ = +

∂∂
 (2.2) 

 

 TM is the thermal moment of the plate defined as 
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and D is the flexural rigidity of the plate denoted as 
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whereα , E and vare the coefficients of the linear thermal expansion, the Young's 
modulus and Poisson’s ratio of the plate material respectively. 
 Since the edge of the circular plate is fixed and clamped; 
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 The temperature of the circular plate satisfying the heat conduction equation as in 
Ozisik [8] is as 
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where k is the thermal conductivity of the circular plate. The equations (2.1)to (2.10) 
constitute the mathematical formulation of the inverse thermo elastic deflection 
problem of circular plate. 
 
 
Solution of the Problem 
Results Required 
Finite Marchi-Fasulo Integral Transform: The finite Marchi-Fasulo integral transform 
of ( )f x , in h z h− ≤ ≤ as in [9] is defined to be 
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where  
 ( ) cos( ) sin( )n n n n nP z Q a z W a z= −  

 1 2 1 2( )cos( ) ( )sin( )n n n nQ a a h a hα α β β= + + −  

 1 2 2 1( )cos( ) ( )sin( )n n n nW a h a a hβ β α α= + + −  
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Determination of Temperature Function 
By applying finite Marchi-Fasulo transform as defined in (3.1) to the 
equations(2.6),(2.7),(2.10) and using (2.8),(2.9) and then using (3.2), once we get the 
temperature function as 
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Determination of Unknown Temperature Function 
Using (3.3) in (2.7), once obtain the unknown temperature function g(z) as 
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Where 
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 ( ) cos( ) sin( )n n n n nP z Q a z W a z= −  

 1 2 1 2( )cos( ) ( )sin( )n n n nQ a a h a hα α β β= + + −  

 1 2 2 1( )cos( ) ( )sin( )n n n nW a h a a hβ β α α= + + −  
 
equations (3.3) and (3.4) are the desired solution of equations (2.6) and (2.7)with 

1 1kα =  and 2 2kα = . 
 
Determination of Quasi-Static Thermal Deflection Function 
Using (3.3) in equation (2.3), we obtain 
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 Assume the solution of (2.1) satisfying the (2.5) as 
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 Using the equations (3.5),(3.6) and the result 2
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(2.1), We obtain the expression for nC as 
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 Substituting the equation (3.7) in the equation (3.6), once obtain the expression for 
thermal deflection function as 
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Special Case 
For formulation of special case of an analytical behavior of a circular plate 
 Set 2 2( ) ( ) ( )f z z h z h ξ= − +   (4.1) 
 
 Applying finite Marchi-Fasulo transform as define in equation (3.1) to the 
equation (4.1),one obtains, 
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 Substituting the value of ( )f n  from equation (4.2) in equations (3.3), (3.4) 
and(3.8), ones obtain 
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Numerical Results 
Set 1 2
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