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Abstract 
 

We introduce in this paper the notion homogeneous metric space on the Galois 
field GF (pm) , where p is a prime natural number. We show that homogeneous 
weight enumerators of some linear codes over GF (pm) are Hamming weight 
enumerators of some of their p-ary images. It is also proved that in some 
cases, the MacWilliams Identity holds for homogeneous metric spaces. 
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Introduction 
A code of length on a Galois ring Zpm or a Galois field GF (pm) can give a code with 
longer length nm. Constructing such p-ary images of longer length over GF (p) from 
codes over GF (pm) has been intensevely studied in [5, 6, 7, 8, 9, 10, 12] among 
others. The importance of p-ary images in burst-correction and in multilevel 
communication has also been shown. 
 In this paper, an upper bound on the Hamming minimum distance of such a code 
is given. It is also shown that some homogeneous metric spaces over Zpm and GF 
(pm) have the same weight distributions as their Hamming space p-ary image over GF 
(p). Consequently the MacWilliams identity holds for some Lee metric spaces. 
 The plan of this paper is as follows. Section I introduces a homogeneous metric on 
GF (pm) from a homogeneous distance on Zpm and a one-to-one map of Zpm onto GF 
(pm). The homogeneous distance defined on GF (pm) is extended to GF (pm) n. Section 
II gives some properties on Lee weight distributions of some linear codes over GF 
(pm) in connection with some of their p-ary images. 
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Homogeneous metric spaces over Zpm and GF (pm).  
Let p be a prime natural number and let m an integer such that m≥2. Let γ be a one-to-
one map of the Galois ring Zpm onto the Galois field K= GF (pm) of order pm such 
that γ (0) =0.  
 
The following theorem extended the definition of homogeneous distance to Zpm. in 
general 
Theorem 1.1 Let ψ be a GF (p) - isomorphism of vectors spaces GF (pm) onto  
GF (p)m. If dH denotes the Hamming distance on GF (p) m then be the map  
∇L of Zpm x Zpm onto the set ℕ of natural numbers defined by ∇L (u, v)  
= dH (ψ (γ (u) ) , ψ (γ (v) ) ) is a distance on Zpm. 
 
Proof. Let φ be the map of Zpm x Zpm onto GF (pm) x GF (pm) defined by φ (u, v) = 
(ψ (γ (u) ) , ψ (γ (v) ) ). Then dHOφ is a distance on Zpm. 
 
Definition 1.2. The distance defined in Theorem 1.1. is called a homogeneous 
distance on Zpm. 
 
The following result defines a homogeneous metric in an extension of a Galois field. 
Theorem 1.2. Let ΔL be the map of KxK onto the set ℕ of natural numbers defined 
by ΔL (u, v) = ∇L (γ-1 (u) , γ-1 (v) ).Then: 

1. ΔL is a distance on K 
2. γ is an isometry of Zpm onto K. 

 
Proof. 

1. ΔL is obviously a distance on K. 
2. Let u and v be two elements of Zpm. Then ΔL (γ (u) , γ (v) ) = ∇L (γ-1 (γ (u) ) , 

γ-1 (γ (v) ) ) = ∇L (u, v). 
 
Definition 1.2. The distance ΔL defined above is called the homogeneous distance on 
GF (pm) with respect to γ. 
 As we know, ∇L can be extended in (Zpm) n, and we can also extend ΔL on Kn by 
the following obvious proposition. 
 
Proposition 1.1. Let n≥2. The map ΠL of KnxKn onto ℕ defined by 
 ΠL ( (u0, u1, …, un-1) , (v0, v1, …, vn-1) ) = ∑0 ≤ i≤n-1 ΔL (ui, vi) is a distance on Kn. 
 
Definition 1.2. (Kn, ΠL) is then called a homogeneous metric space. 
 Now, set F=GF (p). Let ϕ be an isometry of the homogeneous metric space  
(K, ΔL) onto the Hamming metric space (Fm, dH). 
 
Proposition 1.2. Let n be a natural number, n≥2. Then the map ψ of Kn onto Fmn 
defined by ψ ( (u0, u1, …, un-1) ) = (ϕ (u0) , ϕ (u1) , …., ϕ (un-1) ) is an isometry of  
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(Kn, ΠL) onto the Hamming metric space Fmn. 
 
Proof. Since the Hamming weight of ψ ( (u0, u1, …, un-1) ) is the sum of the Hamming 
weights of ϕ (ui) , 0≤i≤m-1, the result follows from the fact ϕ is an isometry of the 
homogeneous metric space (K, ΔL) onto the Hamming metric space (Fm, dH).  
 
Example 1.1. p=3, m=2, GF (9) =GF (3) (α) with α2=1+2α. Let γ be the one-to-one 
of Z9 onto GF (9) defined γ (u0+3u1) = u0+u1α2, For all ui in GF (3) , 0≤i≤1. B= (1, α) 
is a basis of the GF (3) -algebra GF (9). The map ϕB of GF (9) onto GF (3) 2 defined 
by ϕB (x0+x1α2) = (x0+x1, 2x1) is an isometry of a Lee metric space GF (9) onto the 
Hamming metric space GF (3) 2, where the homogeneous weight of u0+u1α2

 is defined 
to be the Hamming weight of ϕB (u0α+u1α2). 
 
Example 1.2. GF (4) = GF (2) (α) , B= (1, α) is a basis of the GF (2) -algebra GF (4). 
The map ϕB of GF (4) onto GF (2) 2 defined by ϕB (x0+x1α) = (x0, x1) is an isometry 
of a homogeneous metric space GF (4) onto the Hamming metric space GF (2) 2. Now 
define the map of ψB of GF (4) n onto GF (2) 2n defined by ψB (u0, u1, …, un-1)  
= (ϕB (u0) , ϕB (u1) , …., ϕB (un-1) ) is an isometry of (GF (4) n, ΠL) onto the Hamming 
metric space GF (2) 2n. 
 
 
Homogeneous weight distributions of some linear codes over GF (pm)  
In this paragraph we are going to give an upper bound on the minimum distance of a 
homogeneous subspace over GF (pm) , and in some cases we describe the weight 
distribution of such space. 
 
We have the following theorem. 
Theorem 2.1. Let C be an (n, k) linear code over GF (pm) and ϕ a linear GF (p) -
isometry of (GF (pm) , ΔL) onto the Hamming metric space GF (p) m. Let ψ be the  
GF (p) - linear map of (GF (pm) n, ΠL) onto the Hamming metric space GF (p) mn 
defined by ψ ( (u0, u1, …, un-1) ) = (ϕ (u0) , ϕ (u1) , …., ϕ (un-1) ). Then C and ψ (C) 
have the same weight distribution with respect to ΠL and the Hamming distance 
respectively. 
 
Proof. Since ϕ is a GF (p) -linear map, it is sufficient to prove that ψ is an isometry of 
(GF (pm) n, ΠL) onto the Hamming metric space GF (p) mn. Let u= (u0, u1,.., un-1) be an 
element of GF (pm) n. Then the result follows from the fact the homogeneous weight 
ψ (u) is equal to the sum of Hamming weights of ϕ (ui) , 0 ≤ i≤m-1. 
 
Theorem 2.2. Let B be a GF (p) -basis of GF (pm) and ϕB a GF (p) - isomorphism of 
GF (pm) onto GF (p) m. Let ψB be the map of GF (pm) n onto GF (p) mn defined by  
ψB (u0, u1, …, un-1) = (ϕB (u0) , ϕB (u1) , …., ϕB (un-1) ). Assume that ϕB is an isometry 
of (GF (pm) , ΔL) onto the Hamming metric space GF (p) m. Let C be an (n, k) linear 
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code over GF (pm). If ψB (C⊥) = ψB (C) ⊥, then the MacWilliams Identity holds for 
weight enumerator polynomials of homogeneous metric spaces C and C⊥. 
 
Proof. Assume that ψB (C⊥) = ψB (C) ⊥. Then C as a homogeneous metric space and 
ψB (C) as a Hamming metric space have the same weight distribution. In the same 
manner, C⊥ as a Lee metric space and ψB (C⊥) as a Hamming metric space have the 
same weight distribution. The result follows that the MacWilliams identity holds for 
ψB (C) and ψB (C) ⊥. 
 
Remark 2.1. If C is an (n, k) linear code over GF (pm) with no generator matrix over 
GF (p) then the assumption ψB (C⊥) = ψB (C) ⊥ occurs when B is such that the matrix 
representation of GF (pm) with respect to B is a symmetric one [5]. 
 
Corollary 2.1. Let C be a linear code over GF (pm) with minimum Hamming weight 
d. Then the minimum distance d’ of the Lee metric subspace C of (GF (pm) n, ΠL) 
verifies d’≤ m (d-1) +1. 
 
Proof. The result follows by Theorem 2.2., since the Hamming minimum distance d’ 
of ψB (C) verifies d’≤ m (d-1) +1. 
 
Theorem 2.3. Let A be a code of length n over Zpm and γ be a one-to-one map of 
Zpm onto GF (pm) such that γ (0) =0. If γ (A) is a linear code over GF (pm) with 
minimum Hamming distance d, then the homogeneous minimum distance d’ of A 
verifies d’≤ m (d-1) +1. 
 

Proof. Let ΔL be the map of GF (pm) x GF (pm) onto the set ℕ of natural numbers 
defined by ΔL (u, v) = δL (γ-1 (u) , γ-1 (v) ). Then ΔL is a homogeneous metric on  
GF (pm) and is an isometry of (Zpm) n onto the Hamming metric space GF (pm) n. 
Since there is a linear GF (p) -isometry ϕ of the homogeneous space GF (pm) onto the 
Hamming metric space GF (p) m, let us define the map ψ of GF (pm) n onto GF (p) mn 
defined by ψ (u0, u1, …, un-1) = (ϕ (u0) , ϕ (u1) , …., ϕ (un-1) ) is an isometry of  
(GF (pm) n, ΠL) onto the Hamming metric space Fmn. Hence the Hamming minimum 
weight d’ of ψ (γ (A) ) verifies d’≤ m (d-1) +1. The result follows by Corollary 2.1. 
and the fact that γ (A) as a homogeneous metric space and ψ (γ (A) as a Hamming 
metric space have the same minimum distance. 
 
The following example illustrates Theorems 2.2 and 2.3. 
Example 3.1. GF (4) = GF (2) (α) , B= (1, α) is a basis of the GF (2) -algebra GF (4). 
The map ϕB of GF (4) onto GF (2) 2 defined by ϕB (x0+x1α) = (x0, x1) is an isometry 
of a homogeneous metric space GF (4) onto the Hamming metric space GF (2) 2. Now 
define the map of ψB of GF (4) 4 onto GF (2) 8 by ψB (u0, u1, …, u7) = (ϕB (u0) ,  
ϕB (u1) , …., ϕB (u7) ). Then ψB is an isometry of (GF (4) n, ΠL) onto the Hamming 
metric space GF (2) 8. Let RSe be the extended (4, 2, 3) self-dual Reed-Solomon code 
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over GF (4). Then ψB (RSe) is the binary (8, 4, 4) self-dual code with all its Hamming 
weights multiple of 4. Therefore RSe has also its Lee weights all multiple by 4. Now 
let η be the one-to-one map of Z4 onto GF (4) defined by η (0) =0, η (1) = α, η (2)  
= α2 and η (3) =1. So η-1 (RSe) is a non linear code over Z4 with all its homogeneous 
weights multiple of 4. 
 
 
Conclusion 
We have shown in this paper that a homogeneous metric on Zpm can give rise to a 
homogeneous metric over GF (pm) that can be extended on GF (pm) n. With the 
materials developed in this paper, we know that, in some cases, a homogeneous 
weight enumerator of a linear code over GF (pm) is exactly the Hamming weight 
enumerator of one of its p-ary image. 
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