On Weight Distributions of Homogeneous Metric Spaces Over GF (p^m) and MacWilliams Identity

Christophe Mouaha and Sélestin Ndjeya

E.N.S. – Département de Mathématiques
B.P. 47 Yaoundé – Cameroun

Abstract

We introduce in this paper the notion homogeneous metric space on the Galois field GF (p^m), where p is a prime natural number. We show that homogeneous weight enumerators of some linear codes over GF (p^m) are Hamming weight enumerators of some of their p-ary images. It is also proved that in some cases, the MacWilliams Identity holds for homogeneous metric spaces.

Keywords: Homogeneous distance, Hamming distance, isometry, p-ary image, MacWilliams Identity.

Introduction

A code of length on a Galois ring Z_p^m or a Galois field GF (p^m) can give a code with longer length nm. Constructing such p-ary images of longer length over GF (p) from codes over GF (p^m) has been intensely studied in [5, 6, 7, 8, 9, 10, 12] among others. The importance of p-ary images in burst-correction and in multilevel communication has also been shown.

In this paper, an upper bound on the Hamming minimum distance of such a code is given. It is also shown that some homogeneous metric spaces over Z_p^m and GF (p^m) have the same weight distributions as their Hamming space p-ary image over GF (p). Consequently the MacWilliams identity holds for some Lee metric spaces.

The plan of this paper is as follows. Section I introduces a homogeneous metric on GF (p^m) from a homogeneous distance on Z_p^m and a one-to-one map of Z_p^m onto GF (p^m). The homogeneous distance defined on GF (p^m) is extended to GF (p^m)^n. Section II gives some properties on Lee weight distributions of some linear codes over GF (p^m) in connection with some of their p-ary images.
Homogeneous metric spaces over \mathbb{Z}_p^m and $GF (p^m)$.

Let p be a prime natural number and let m an integer such that $m \geq 2$. Let γ be a one-to-one map of the Galois ring \mathbb{Z}_p^m onto the Galois field $K = GF (p^m)$ of order p^m such that $\gamma (0) = 0$.

The following theorem extended the definition of homogeneous distance to \mathbb{Z}_p^m in general.

Theorem 1.1 Let ψ be a $GF (p)$ - isomorphism of vectors spaces $GF (p^m)$ onto $GF (p)^m$. If d_H denotes the Hamming distance on $GF (p)^m$ then be the map ∇_L of $\mathbb{Z}_p^m \times \mathbb{Z}_p^m$ onto the set \mathbb{N} of natural numbers defined by $\nabla_L (u, v) = d_H (\psi (\gamma (u)) , \psi (\gamma (v)))$ is a distance on \mathbb{Z}_p^m.

Proof. Let ϕ be the map of $\mathbb{Z}_p^m \times \mathbb{Z}_p^m$ onto $GF (p^m) \times GF (p^m)$ defined by $\phi (u, v) = (\psi (\gamma (u)) , \psi (\gamma (v)))$. Then $d_H \circ \phi$ is a distance on \mathbb{Z}_p^m.

Definition 1.2. The distance defined in Theorem 1.1. is called a homogeneous distance on \mathbb{Z}_p^m.

The following result defines a homogeneous metric in an extension of a Galois field.

Theorem 1.2. Let Δ_L be the map of $K \times K$ onto the set \mathbb{N} of natural numbers defined by $\Delta_L (u, v) = \nabla_L (\gamma^{-1} (u) , \gamma^{-1} (v))$. Then:

1. Δ_L is a distance on K.
2. γ is an isometry of \mathbb{Z}_p^m onto K.

Proof.

1. Δ_L is obviously a distance on K.
2. Let u and v be two elements of \mathbb{Z}_p^m. Then $\Delta_L (\gamma (u) , \gamma (v)) = \nabla_L (\gamma^{-1} (\gamma (u)) , \gamma^{-1} (\gamma (v))) = \nabla_L (u, v)$.

Definition 1.2. The distance Δ_L defined above is called the homogeneous distance on $GF (p^m)$ with respect to γ.

As we know, ∇_L can be extended in $(\mathbb{Z}_p^m)^n$, and we can also extend Δ_L on K^n by the following obvious proposition.

Proposition 1.1. Let $n \geq 2$. The map Π_L of $K^n \times K^n$ onto \mathbb{N} defined by $\Pi_L ((u_0, u_1, \ldots, u_{n-1}), (v_0, v_1, \ldots, v_{n-1})) = \sum_{0 \leq i \leq n-1} \Delta_L (u_i, v_i)$ is a distance on K^n.

Definition 1.2. (K^n, Π_L) is then called a homogeneous metric space.

Now, set $F = GF (p)$. Let φ be an isometry of the homogeneous metric space (K, Δ_L) onto the Hamming metric space (F^m, d_H).

Proposition 1.2. Let n be a natural number, $n \geq 2$. Then the map ψ of K^n onto F^{mn} defined by $\psi ((u_0, u_1, \ldots, u_{n-1})) = (\varphi (u_0) , \varphi (u_1) , \ldots, \varphi (u_{n-1}))$ is an isometry of
On Weight Distributions of Homogeneous Metric Spaces Over $GF(p^m)$

(K^n, Π_L) onto the Hamming metric space F^{mn}.

Proof. Since the Hamming weight of $\psi((u_0, u_1, \ldots, u_{n-1}))$ is the sum of the Hamming weights of $\phi(u_i), 0 \leq i \leq m-1$, the result follows from the fact ϕ is an isometry of the homogeneous metric space (K, Δ_L) onto the Hamming metric space (F^{mn}, d_H).

Example 1.1. $p=3, m=2$, $GF(9) = GF(3)(\alpha)$ with $\alpha^2 = 1 + 2\alpha$. Let γ be the one-to-one of Z_9 onto $GF(9)$ defined $\gamma(u_0 + 3u_1) = u_0 + u_1\alpha^2$. For all u_i in $GF(3), 0 \leq i \leq 1$. $B = (1, \alpha)$ is a basis of the $GF(3)$ -algebra $GF(9)$. The map ϕ_B of $GF(9)$ onto $GF(3)^2$ defined by $\phi_B(x_0 + x_1\alpha^2) = (x_0 + x_1, 2x_1)$ is an isometry of a Lee metric space $GF(9)$ onto the Hamming metric space $GF(3)^2$, where the homogeneous weight of $u_0 + u_1\alpha^2$ is defined to be the Hamming weight of $\phi_B(u_0\alpha + u_1\alpha^2)$.

Example 1.2. $GF(4) = GF(2)(\alpha)$, $B = (1, \alpha)$ is a basis of the $GF(2)$ -algebra $GF(4)$. The map ϕ_B of $GF(4)$ onto $GF(2)^2$ defined by $\phi_B(x_0 + x_1\alpha) = (x_0, x_1)$ is an isometry of a homogeneous metric space $GF(4)$ onto the Hamming metric space $GF(2)^2$. Now define the map of ψ_B of $GF(4)^n$ onto $GF(2)^{2n}$ defined by $\psi_B(u_0, u_1, \ldots, u_{n-1}) = (\phi_B(u_0), \phi_B(u_1), \ldots, \phi_B(u_{n-1}))$ is an isometry of $(GF(4)^n, \Pi_L)$ onto the Hamming metric space $GF(2)^{2n}$.

Homogeneous weight distributions of some linear codes over $GF(p^m)$

In this paragraph we are going to give an upper bound on the minimum distance of a homogeneous subspace over $GF(p^m)$, and in some cases we describe the weight distribution of such space.

We have the following theorem.

Theorem 2.1. Let C be an (n, k) linear code over $GF(p^m)$ and ϕ a linear $GF(p)$ -isometry of $(GF(p^m), \Delta_L)$ onto the Hamming metric space $GF(p)^m$. Let ψ be the $GF(p)$ - linear map of $(GF(p^m)^n, \Pi_L)$ onto the Hamming metric space $GF(p)^{mn}$ defined by $\psi((u_0, u_1, \ldots, u_{n-1})) = (\phi(u_0), \phi(u_1), \ldots, \phi(u_{n-1}))$. Then C and $\psi(C)$ have the same weight distribution with respect to Π_L and the Hamming distance respectively.

Proof. Since ϕ is a $GF(p)$ -linear map, it is sufficient to prove that ψ is an isometry of $(GF(p^m)^n, \Pi_L)$ onto the Hamming metric space $GF(p)^{mn}$. Let $u = (u_0, u_1, \ldots, u_{n-1})$ be an element of $GF(p^m)^n$. Then the result follows from the fact the homogeneous weight $\psi(u)$ is equal to the sum of Hamming weights of $\phi(u_i), 0 \leq i \leq m-1$.

Theorem 2.2. Let B be a $GF(p)$ -basis of $GF(p^m)$ and ϕ_B a $GF(p)$ - isomorphism of $GF(p^m)$ onto $GF(p)^m$. Let ψ_B be the map of $GF(p^m)^n$ onto $GF(p)^{mn}$ defined by $\psi_B(u_0, u_1, \ldots, u_{n-1}) = (\phi_B(u_0), \phi_B(u_1), \ldots, \phi_B(u_{n-1}))$. Assume that ϕ_B is an isometry of $(GF(p^m), \Delta_L)$ onto the Hamming metric space $GF(p)^m$. Let C be an (n, k) linear
code over GF (p^m). If $\psi_B(C^\perp) = \psi_B(C)^\perp$, then the MacWilliams Identity holds for weight enumerator polynomials of homogeneous metric spaces C and C^\perp.

Proof. Assume that $\psi_B(C^\perp) = \psi_B(C)^\perp$. Then C as a homogeneous metric space and $\psi_B(C)$ as a Hamming metric space have the same weight distribution. In the same manner, C^\perp as a Lee metric space and $\psi_B(C^\perp)$ as a Hamming metric space have the same weight distribution. The result follows that the MacWilliams identity holds for $\psi_B(C)$ and $\psi_B(C)^\perp$.

Remark 2.1. If C is an (n, k) linear code over GF (p^m) with no generator matrix over GF (p) then the assumption $\psi_B(C^\perp) = \psi_B(C)^\perp$ occurs when B is such that the matrix representation of GF (p^m) with respect to B is a symmetric one [5].

Corollary 2.1. Let C be a linear code over GF (p^m) with minimum Hamming weight d. Then the minimum distance d' of the Lee metric subspace C of ($GF(p^m), \Pi_L$) verifies $d' \leq m(d-1)+1$.

Proof. The result follows by Theorem 2.2., since the Hamming minimum distance d' of $\psi_B(C)$ verifies $d' \leq m(d-1)+1$.

Theorem 2.3. Let A be a code of length n over Z_{pm} and γ be a one-to-one map of Z_{pm} onto $GF(p^m)$ such that $\gamma(0) = 0$. If $\gamma(A)$ is a linear code over GF (p^m) with minimum Hamming distance d, then the homogeneous minimum distance d' of A verifies $d' \leq m(d-1)+1$.

Proof. Let Δ_L be the map of GF (p^m) x GF (p^m) onto the set \mathbb{N} of natural numbers defined by $\Delta_L(u, v) = \delta_L(\gamma^{-1}(u), \gamma^{-1}(v))$. Then Δ_L is a homogeneous metric on GF (p^m) and is an isometry of (Z_{pm}, Π) onto the Hamming metric space GF (p^m) n. Since there is a linear GF (p) -isometry φ of the homogeneous space GF (p^m) onto the Hamming metric space GF (p^m) \mathbb{N}, let us define the map ψ of GF (p^m) n onto GF (p^m) \mathbb{N} defined by $\psi(u_0, u_1, \ldots, u_{n-1}) = (\varphi(u_0), \varphi(u_1), \ldots, \varphi(u_{n-1}))$ is an isometry of ($GF(p^m)^n, \Pi_L$) onto the Hamming metric space F^m. Hence the Hamming minimum weight d' of $\psi(\gamma(A))$ verifies $d' \leq m(d-1)+1$. The result follows by Corollary 2.1.

The following example illustrates Theorems 2.2 and 2.3.

Example 3.1. $GF(4) = GF(2)(\alpha)$, $B= (1, \alpha)$ is a basis of the GF (2) -algebra GF (4). The map φ_B of GF (4) onto GF (2) 2 defined by $\varphi_B(x_0+x_1\alpha) = (x_0, x_1)$ is an isometry of a homogeneous metric space GF (4) onto the Hamming metric space GF (2) 2. Now define the map of ψ_B of GF (4) 4 onto GF (2) 8 by $\psi_B(u_0, u_1, \ldots, u_7) = (\varphi_B(u_0), \varphi_B(u_1), \ldots, \varphi_B(u_7))$. Then ψ_B is an isometry of (GF (4) $^n, \Pi_L$) onto the Hamming metric space GF (2) 8. Let RS5 be the extended (4, 2, 3) self-dual Reed-Solomon code
over GF(4). Then $\psi_B(RS^6)$ is the binary $(8, 4, 4)$ self-dual code with all its Hamming weights multiple of 4. Therefore RS^6 has also its Lee weights all multiple by 4. Now let η be the one-to-one map of \mathbb{Z}_4 onto GF(4) defined by $\eta(0)=0$, $\eta(1)=\alpha$, $\eta(2)=\alpha^2$ and $\eta(3)=1$. So $\eta^{-1}(RS^6)$ is a non-linear code over \mathbb{Z}_4 with all its homogeneous weights multiple of 4.

Conclusion

We have shown in this paper that a homogeneous metric on \mathbb{Z}_{p^m} can give rise to a homogeneous metric over GF(p^m) that can be extended on GF(p^m). With the materials developed in this paper, we know that, in some cases, a homogeneous weight enumerator of a linear code over GF(p^m) is exactly the Hamming weight enumerator of one of its p-ary image.

References

