On Weight Distributions of Homogeneous Metric Spaces Over GF (p^m) and MacWilliams Identity

Christophe Mouaha and Sélestin Ndjeya

E.N.S. – Département de Mathématiques B.P. 47 Yaoundé – Cameroun

Abstract

We introduce in this paper the notion homogeneous metric space on the Galois field $GF(p^m)$, where p is a prime natural number. We show that homogeneous weight enumerators of some linear codes over $GF(p^m)$ are Hamming weight enumerators of some of their p-ary images. It is also proved that in some cases, the MacWilliams Identity holds for homogeneous metric spaces.

Keywords: Homogeneous distance, Hamming distance, isometry, p-ary image, MacWilliams Identity.

Introduction

A code of length on a Galois ring Z_pm or a Galois field GF (p^m) can give a code with longer length nm. Constructing such p-ary images of longer length over GF (p) from codes over GF (p^m) has been intensevely studied in [5, 6, 7, 8, 9, 10, 12] among others. The importance of p-ary images in burst-correction and in multilevel communication has also been shown.

In this paper, an upper bound on the Hamming minimum distance of such a code is given. It is also shown that some homogeneous metric spaces over Z_pm and GF (p^m) have the same weight distributions as their Hamming space p-ary image over GF (p). Consequently the MacWilliams identity holds for some Lee metric spaces.

The plan of this paper is as follows. Section I introduces a homogeneous metric on GF (p^m) from a homogeneous distance on Z_pm and a one-to-one map of Z_pm onto GF (p^m) . The homogeneous distance defined on GF (p^m) is extended to GF $(p^m)^n$. Section II gives some properties on Lee weight distributions of some linear codes over GF (p^m) in connection with some of their p-ary images.

Homogeneous metric spaces over Z_pm and GF (p^m).

Let p be a prime natural number and let m an integer such that $m \ge 2$. Let γ be a one-toone map of the Galois ring Z_pm onto the Galois field K= GF (p^m) of order p^m such that $\gamma(0) = 0$.

The following theorem extended the definition of homogeneous distance to $Z_{\text{p}}\text{m.}$ in general

Theorem 1.1 Let ψ be a GF (p) - isomorphism of vectors spaces GF (p^m) onto GF (p)^m. If d_H denotes the Hamming distance on GF (p)^m then be the map ∇_L of $Z_pm \propto Z_pm$ onto the set \mathbb{N} of natural numbers defined by ∇_L (u, v) = d_H (ψ (γ (u)), ψ (γ (v))) is a distance on Z_pm .

Proof. Let ϕ be the map of $Z_pm \ge Z_pm$ onto GF $(p^m) \ge GF(p^m)$ defined by $\phi(u, v) = (\psi(\gamma(u)), \psi(\gamma(v)))$. Then $d_HO\phi$ is a distance on Z_pm .

Definition 1.2. The distance defined in Theorem 1.1. is called a homogeneous distance on Z_pm .

The following result defines a homogeneous metric in an extension of a Galois field.

Theorem 1.2. Let Δ_L be the map of KxK onto the set \mathbb{N} of natural numbers defined by Δ_L (u, v) = ∇_L (γ^{-1} (u) , γ^{-1} (v)).Then:

- 1. Δ_L is a distance on K
- 2. γ is an isometry of Z_pm onto K.

Proof.

- 1. Δ_L is obviously a distance on K.
- 2. Let u and v be two elements of Z_pm . Then $\Delta_L (\gamma (u), \gamma (v)) = \nabla_L (\gamma^{-1} (\gamma (u))), \gamma^{-1} (\gamma (v))) = \nabla_L (u, v).$

Definition 1.2. The distance Δ_L defined above is called the homogeneous distance on GF (p^m) with respect to γ .

As we know, ∇_L can be extended in $(Z_pm)^n$, and we can also extend Δ_L on K^n by the following obvious proposition.

Proposition 1.1. Let $n \ge 2$. The map \prod_{L} of $K^n x K^n$ onto \mathbb{N} defined by

 $\Pi_L((u_0, u_1, ..., u_{n-1}), (v_0, v_1, ..., v_{n-1})) = \sum_{0 \le i \le n-1} \Delta_L(u_i, v_i)$ is a distance on K^n .

Definition 1.2. (K^n, Π_L) is then called a homogeneous metric space.

Now, set F=GF (p). Let φ be an isometry of the homogeneous metric space (K, Δ_L) onto the Hamming metric space (F^m, d_H).

Proposition 1.2. Let n be a natural number, $n \ge 2$. Then the map ψ of K^n onto F^{mn} defined by ψ ((u₀, u₁, ..., u_{n-1})) = (ϕ (u₀) , ϕ (u₁) , ..., ϕ (u_{n-1})) is an isometry of

160

 (K^n, Π_L) onto the Hamming metric space F^{mn} .

Proof. Since the Hamming weight of ψ ($(u_0, u_1, ..., u_{n-1})$) is the sum of the Hamming weights of φ (u_i) , $0 \le i \le m-1$, the result follows from the fact φ is an isometry of the homogeneous metric space (K, Δ_L) onto the Hamming metric space (F^m, d_H).

Example 1.1. p=3, m=2, GF (9) =GF (3) (α) with α^2 =1+2 α . Let γ be the one-to-one of Z₉ onto GF (9) defined γ (u_0 +3 u_1) = u_0 + $u_1\alpha^2$, For all u_i in GF (3) , $0 \le i \le 1$. B= (1, α) is a basis of the GF (3) -algebra GF (9). The map φ_B of GF (9) onto GF (3) ² defined by φ_B (x_0 + $x_1\alpha^2$) = (x_0 + x_1 , 2 x_1) is an isometry of a Lee metric space GF (9) onto the Hamming metric space GF (3) ², where the homogeneous weight of u_0 + $u_1\alpha^2$ is defined to be the Hamming weight of φ_B ($u_0\alpha$ + $u_1\alpha^2$).

Example 1.2. GF (4) = GF (2) (α), B= (1, α) is a basis of the GF (2) -algebra GF (4). The map φ_B of GF (4) onto GF (2) ² defined by $\varphi_B (x_0+x_1\alpha) = (x_0, x_1)$ is an isometry of a homogeneous metric space GF (4) onto the Hamming metric space GF (2) ². Now define the map of ψ_B of GF (4) ⁿ onto GF (2) ²ⁿ defined by $\psi_B (u_0, u_1, ..., u_{n-1}) = (\varphi_B (u_0), \varphi_B (u_1), ..., \varphi_B (u_{n-1}))$ is an isometry of (GF (4) ⁿ, Π_L) onto the Hamming metric space GF (2) ²ⁿ.

Homogeneous weight distributions of some linear codes over GF (p^m) In this paragraph we are going to give an upper bound on the minimum distance of a homogeneous subspace over GF (p^m) , and in some cases we describe the weight distribution of such space.

We have the following theorem.

Theorem 2.1. Let C be an (n, k) linear code over GF (p^m) and φ a linear GF (p) - isometry of (GF (p^m), Δ_L) onto the Hamming metric space GF (p)^m. Let ψ be the GF (p) - linear map of (GF (p^m)ⁿ, Π_L) onto the Hamming metric space GF (p)^{mn} defined by ψ ((u₀, u₁, ..., u_{n-1})) = (φ (u₀), φ (u₁), ..., φ (u_{n-1})). Then C and ψ (C) have the same weight distribution with respect to Π_L and the Hamming distance respectively.

Proof. Since φ is a GF (p) -linear map, it is sufficient to prove that ψ is an isometry of (GF (p^m)ⁿ, Π_L) onto the Hamming metric space GF (p)^{mn.} Let u= (u₀, u₁,.., u_{n-1}) be an element of GF (p^m)ⁿ. Then the result follows from the fact the homogeneous weight ψ (u) is equal to the sum of Hamming weights of φ (u_i), $0 \le i \le m-1$.

Theorem 2.2. Let B be a GF (p) -basis of GF (p^m) and φ_B a GF (p) - isomorphism of GF (p^m) onto GF (p) ^m. Let ψ_B be the map of GF (p^m) ⁿ onto GF (p) ^{mn} defined by $\psi_B(u_0, u_1, ..., u_{n-1}) = (\varphi_B(u_0), \varphi_B(u_1), ..., \varphi_B(u_{n-1}))$. Assume that φ_B is an isometry of (GF (p^m), Δ_L) onto the Hamming metric space GF (p) ^m. Let C be an (n, k) linear

code over GF (p^m). If ψ_B (C^{\perp}) = ψ_B (C) $^{\perp}$, then the MacWilliams Identity holds for weight enumerator polynomials of homogeneous metric spaces C and C^{\perp}.

Proof. Assume that $\psi_B (C^{\perp}) = \psi_B (C)^{\perp}$. Then C as a homogeneous metric space and $\psi_B (C)$ as a Hamming metric space have the same weight distribution. In the same manner, C^{\perp} as a Lee metric space and $\psi_B (C^{\perp})$ as a Hamming metric space have the same weight distribution. The result follows that the MacWilliams identity holds for $\psi_B (C)$ and $\psi_B (C)^{\perp}$.

Remark 2.1. If C is an (n, k) linear code over GF (p^m) with no generator matrix over GF (p) then the assumption $\psi_B (C^{\perp}) = \psi_B (C)^{\perp}$ occurs when B is such that the matrix representation of GF (p^m) with respect to B is a symmetric one [5].

Corollary 2.1. Let C be a linear code over GF (p^m) with minimum Hamming weight d. Then the minimum distance d' of the Lee metric subspace C of $(GF(p^m)^n, \Pi_L)$ verifies d' $\leq m$ (d-1) +1.

Proof. The result follows by Theorem 2.2., since the Hamming minimum distance d' of ψ_B (C) verifies d' \leq m (d-1) +1.

Theorem 2.3. Let A be a code of length n over Z_pm and γ be a one-to-one map of Z_pm onto GF (p^m) such that γ (0) =0. If γ (A) is a linear code over GF (p^m) with minimum Hamming distance d, then the homogeneous minimum distance d' of A verifies d' \leq m (d-1) +1.

Proof. Let Δ_L be the map of GF $(p^m) \times GF(p^m)$ onto the set \mathbb{N} of natural numbers defined by $\Delta_L(u, v) = \delta_L(\gamma^{-1}(u), \gamma^{-1}(v))$. Then Δ_L is a homogeneous metric on GF (p^m) and is an isometry of $(Z_pm)^n$ onto the Hamming metric space GF $(p^m)^n$. Since there is a linear GF (p)-isometry φ of the homogeneous space GF (p^m) onto the Hamming metric space GF $(p)^m$, let us define the map ψ of GF $(p^m)^n$ onto GF $(p)^{mn}$ defined by $\psi(u_0, u_1, ..., u_{n-1}) = (\varphi(u_0), \varphi(u_1), ..., \varphi(u_{n-1}))$ is an isometry of (GF $(p^m)^n, \Pi_L)$ onto the Hamming metric space F^{mn} . Hence the Hamming minimum weight d' of $\psi(\gamma(A))$ verifies d' \leq m (d-1) +1. The result follows by Corollary 2.1. and the fact that $\gamma(A)$ as a homogeneous metric space and $\psi(\gamma(A))$ as a Hamming metric space have the same minimum distance.

The following example illustrates Theorems 2.2 and 2.3.

Example 3.1. GF (4) = GF (2) (α), B= (1, α) is a basis of the GF (2) -algebra GF (4). The map φ_B of GF (4) onto GF (2) ² defined by $\varphi_B (x_0+x_1\alpha) = (x_0, x_1)$ is an isometry of a homogeneous metric space GF (4) onto the Hamming metric space GF (2) ². Now define the map of ψ_B of GF (4) ⁴ onto GF (2) ⁸ by $\psi_B (u_0, u_1, ..., u_7) = (\varphi_B (u_0), \varphi_B (u_1), ..., \varphi_B (u_7))$. Then ψ_B is an isometry of (GF (4) ⁿ, Π_L) onto the Hamming metric space GF (2) ⁸. Let RS^e be the extended (4, 2, 3) self-dual Reed-Solomon code

over GF (4). Then ψ_B (RS^e) is the binary (8, 4, 4) self-dual code with all its Hamming weights multiple of 4. Therefore RS^e has also its Lee weights all multiple by 4. Now let η be the one-to-one map of Z₄ onto GF (4) defined by η (0) =0, η (1) = α , η (2) = α^2 and η (3) =1. So η^{-1} (RS^e) is a non linear code over Z₄ with all its homogeneous weights multiple of 4.

Conclusion

We have shown in this paper that a homogeneous metric on Z_pm can give rise to a homogeneous metric over GF (p^m) that can be extended on GF $(p^m)^n$. With the materials developed in this paper, we know that, in some cases, a homogeneous weight enumerator of a linear code over GF (p^m) is exactly the Hamming weight enumerator of one of its p-ary image.

References

- [1] Astola J., "An Elias-type bound for Lee codes over large alphabets and its application to perfect codes", Information Theory, IEEE Transactions on, Vol. 28, Issue:1 pp.111-113, (1982)..
- [2] Bonnecaze A. and Solé P., "Quaternary constructions of formally self-dual binary codes and unimodular lattices", Lecture Notes in Computer Science, Vol.781, pp.194-205, (1993)
- [3] Byrne, E. "Decoding a class of Lee metric codes over a Galois ring", Information Theory, IEEE Transactions on, Volume 48, Issue 4, pp:966 – 975 (2002).
- [4] Galand, F. « On the Minimum Distance of Some Families of Z2k-Linear Codes », Lecture Notes in Computer Science, Vol. 2643, pp. 603 (2003).
- [5] Mouaha C., "On q-ary images of self-dual codes", AAECC3, Springer-Verlag, N°4, pp;311-319 (1992).
- [6] Mouaha C. and Schiffels G., "All qm-ary cyclic codes with cyclic q-ary image are known", Designs, Codes and Cryptography, vol. 23, pp. 81 98, May 2001
- [7] Patrice Rabizzoni, "Relation between the minimum weight of a linear code over GF (qm) and its q-ary image over GF (q) ", Springer Lect. Notes in Comp. Sc. Vol.388, pp. 209-212 (1988).
- [8] Rabizzoni P. "Relation between the minimum weight of a linear code over GF (qm) and its q-ary image over GF (q) ", Springer Lect. Notes in Comp. Sc. Vol.388, pp. 209-212 (1988).
- [9] Solé P. and Sison V., "Bounds on the minimum homogeneous distance of the pr-ary image of linear block codes over the Galois ring GR (pr, m), IEEE Transactions on Information Theory, IT-53, pp. 2270-2274 (2007).
- [10] Wolfmann J., "Binary Images of Cyclic Codes over Z4", IEEE Trans. Inform. Theory, vol. 47, pp. 1773-1779, 2001.
- [11] Wolfmann J., "Difference Sets in (Z4) m and (F2) 2m ", Designs, Codes and Cryptography, 20, 73-88, 2000.

[12] Wolfmann J., "Negacyclic and Cyclic Codes over Z4", IEEE Trans. Inform. Theory, vol.45, n°5, pp. 2527-2532, 1999.

164