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Abstract

We introduce in this paper the notion homogeneous metric space on the Galois
field GF (p™) , where p is a prime natural number. We show that homogeneous
weight enumerators of some linear codes over GF (p™) are Hamming weight
enumerators of some of their p-ary images. It is aso proved that in some
cases, the MacWilliams Identity holds for homogeneous metric spaces.
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Introduction

A code of length on a Galoisring Z,m or a Galois field GF (p™) can give a code with
longer length nm. Constructing such p-ary images of longer length over GF (p) from
codes over GF (p™) has been intensevely studied in [5, 6, 7, 8, 9, 10, 12] among
others. The importance of p-ary images in burst-correction and in multilevel
communication has also been shown.

In this paper, an upper bound on the Hamming minimum distance of such a code
is given. It is also shown that some homogeneous metric spaces over Z,m and GF
(p™ have the same weight distributions as their Hamming space p-ary image over GF
(p). Consequently the MacWilliams identity holds for some Lee metric spaces.

The plan of this paper is as follows. Section | introduces a homogeneous metric on
GF (p™) from a homogeneous distance on Z,m and a one-to-one map of Z,m onto GF
(p™). The homogeneous distance defined on GF (p™) is extended to GF (p™) ". Section
I gives some properties on Lee weight distributions of some linear codes over GF
(p™ in connection with some of their p-ary images.
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Homogeneous metric spacesover Z,m and GF (p™).
Let p be aprime natural number and let m an integer such that m>2. Let y be a one-to-
one map of the Gaois ring Z;m onto the Galois field K= GF (p™) of order p™ such

that y (0) =O.

The following theorem extended the definition of homogeneous distance to Z,m. in
generd

Theorem 1.1 Let y be a GF (p) - isomorphism of vectors spaces GF (p™) onto
GF (p)™. If dy denotes the Hamming distance on GF (p) ™ then be the map

Ve of Zym x Z;m onto the set N of natural numbers defined by V. (u, V)
=du (v (y (U)), w(y (v)))isadistance on Z,m.

Proof. Let ¢ be the map of Zym x Z;m onto GF (p™) x GF (p™) defined by ¢ (u, v) =
(w(y(u)),w(y(v))). ThendyO¢ is adistance on Zym.

Definition 1.2. The distance defined in Theorem 1.1. is caled a homogeneous
distance on Z,m.

The following result defines a homogeneous metric in an extension of a Galoisfield.

Theorem 1.2. Let A. be the map of KxK onto the set N of natura numbers defined
by AL (U, v) = Ve (v (u),y™ (v) ). Then:

1. A_isadistanceon K

2. yisanisometry of Z,m onto K.

Proof.
1. Apisobviously adistance on K.
2. Letuand v betwo elements of Z;m. Then A, (y (u) , v (V) ) = VL Gy (u),

YT (v)) =V V).

Definition 1.2. The distance A, defined above is called the homogeneous distance on
GF (p™) with respect toy.

Aswe know, V| can be extended in (Z,m) ", and we can also extend A_ on K" by
the following obvious proposition.

Proposition 1.1. Let n>2. The map I of K"xK" onto N defined by
. ((Uo, Ug, ..., Un1) , (Vo, V1, -.., V1) ) = Zo<i<nt AL (Ui, Vi) isadistance on K"

Definition 1.2. (K", I1,) is then called a homogeneous metric space.
Now, set F=GF (p). Let ¢ be an isometry of the homogeneous metric space
(K, AL) onto the Hamming metric space (F™, dy).

Proposition 1.2. Let n be a natural number, n>2. Then the map y of K" onto F™
defined by v ( (Uo, Uy, ..., Un1) ) = (¢ (Uo) , @ (U1) , ...., @ (Un1) ) IS an isometry of
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(K", IT.) onto the Hamming metric space F™.

Proof. Since the Hamming weight of v ( (Uo, Uy, ..., Un1) ) iSthe sum of the Hamming
weights of ¢ (u;) , 0<i<m-1, the result follows from the fact ¢ is an isometry of the
homogeneous metric space (K, A.) onto the Hamming metric space (F", dy).

Example 1.1. p=3, m=2, GF (9) =GF (3) (o) with a®>=1+20.. Let y be the one-to-one
of Zg onto GF (9) defined y (Ug+3uy) = Ug*+usa?, For al u; in GF (3) , 0<i<1. B= (1, o)
is a basis of the GF (3) -algebra GF (9). The map ¢g of GF (9) onto GF (3) ? defined
by @g (Xo+x10%) = (Xo+X1, 2X1) is an isometry of a Lee metric space GF (9) onto the
Hamming metric space GF (3) 2, where the homogeneous weight of ug+u,a?is defined
to be the Hamming weight of @g (Ugo+uso?).

Example 1.2. GF (4) = GF (2) (o) , B= (1, o) isabasis of the GF (2) -algebra GF (4).
The map g of GF (4) onto GF (2) ? defined by ¢g (Xo*+X10) = (Xo, X1) iS an isometry
of a homogeneous metric space GF (4) onto the Hamming metric space GF (2) 2. Now
define the map of yg of GF (4) " onto GF (2) " defined by wg (U, Ui, ..., Un1)
= (pg (Up) , @B (U1) , ...., B (Un.1) ) isan isometry of (GF (4) ", IT.) onto the Hamming
metric space GF (2) 2",

Homogeneous weight distributions of some linear codes over GF (p™)
In this paragraph we are going to give an upper bound on the minimum distance of a
homogeneous subspace over GF (p™) , and in some cases we describe the weight
distribution of such space.

We have the following theorem.

Theorem 2.1. Let C be an (n, k) linear code over GF (p™) and ¢ a linear GF (p) -
isometry of (GF (p™) , AL) onto the Hamming metric space GF (p) ™. Let y be the
GF (p) - linear map of (GF (p™) ", I1.) onto the Hamming metric space GF (p) ™
defined by v ( (Uo, Uy, ..., Un-1) ) = (@ (Uo) , @ (U1) , ..., @ (Un-2) ). Then C and y (C)
have the same weight distribution with respect to IT, and the Hamming distance
respectively.

Proof. Since ¢ isa GF (p) -linear map, it is sufficient to prove that v is an isometry of
(GF (p™ ", 1) onto the Hamming metric space GF (p) ™ Let u= (Ug, Us,.., Un.1) be an
element of GF (p™) ". Then the result follows from the fact the homogeneous weight
v (u) isequal to the sum of Hamming weights of ¢ (u;) , 0 <i<m-1.

Theorem 2.2. Let B be a GF (p) -basis of GF (p™) and ¢g a GF (p) - isomorphism of
GF (p™) onto GF (p) ™. Let yg be the map of GF (p™) " onto GF (p) ™ defined by
g (Uo, Uy, ..., Un1) = (9B (Uo) , @B (U1) , ..., ¢8 (Un-1) ). Assume that @g is an isometry
of (GF (p™) , AL) onto the Hamming metric space GF (p) ™. Let C be an (n, K) linear
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code over GF (p™M). If yg (C") = yg (C) *, then the MacWilliams Identity holds for
weight enumerator polynomials of homogeneous metric spaces C and C*.

Proof. Assume that yg (C) = yg (C) *. Then C as a homogeneous metric space and
yg (C) as a Hamming metric space have the same weight distribution. In the same
manner, C* as a Lee metric space and yg (C") as a Hamming metric space have the
same weight distribution. The result follows that the MacWilliams identity holds for

e (C) and ys (C) -

Remark 2.1. If Cisan (n, k) linear code over GF (p™) with no generator matrix over
GF (p) then the assumption yg (C) = yg (C) * occurs when B is such that the matrix
representation of GF (p™) with respect to B is a symmetric one [5].

Corollary 2.1. Let C be alinear code over GF (p™) with minimum Hamming weight
d. Then the minimum distance d’ of the Lee metric subspace C of (GF (p™ ", IT,)
verifiesd'<m (d-1) +1.

Proof. The result follows by Theorem 2.2., since the Hamming minimum distance d’
of yg (C) verifiesd’< m (d-1) +1.

Theorem 2.3. Let A be a code of length n over Z;m and y be a one-to-one map of
Zym onto GF (p™) such that y (0) =0. If y (A) is a linear code over GF (p™) with
minimum Hamming distance d, then the homogeneous minimum distance d’ of A
verifiesd'<m (d-1) +1.

Proof. Let A_ be the map of GF (p™) x GF (p™) onto the set N of natural numbers
defined by AL (u, v) = & (v (u) , y* (v) ). Then A_ is a homogeneous metric on
GF (p™) and is an isometry of (Z,m) " onto the Hamming metric space GF (p™) ".
Since thereis alinear GF (p) -isometry ¢ of the homogeneous space GF (p™) onto the
Hamming metric space GF (p) ™, let us define the map v of GF (p™) " onto GF (p) ™
defined by v (up, U1, ..., Un1) = (¢ (Ug) , ¢ (Ug) , ...., ¢ (Un1) ) iS an isometry of
(GF (p™ ", I1.) onto the Hamming metric space F™. Hence the Hamming minimum
weight d' of vy (y (A) ) verifiesd’ < m (d-1) +1. The result follows by Corollary 2.1.
and the fact that y (A) as a homogeneous metric space and v (y (A) as a Hamming
metric space have the same minimum distance.

The following example illustrates Theorems 2.2 and 2.3.

Example 3.1. GF (4) = GF (2) (o)) , B= (1, o) isabasis of the GF (2) -algebra GF (4).
The map g of GF (4) onto GF (2) 2 defined by ¢g (Xo+X10) = (Xo, X1) iS an isometry
of a homogeneous metric space GF (4) onto the Hamming metric space GF (2) . Now
define the map of yg of GF (4) * onto GF (2) ® by wg (Uo, Uy, ..., U) = (¢ (Uo) ,
o8 (U1) , ...., o8 (U7) ). Then g is an isometry of (GF (4) ", I1.) onto the Hamming
metric space GF (2) °. Let RS® be the extended (4, 2, 3) self-dual Reed-Solomon code



On Weight Distributions of Homogeneous Metric Spaces Over GF(p™) 163

over GF (4). Then yg (RS’) isthe binary (8, 4, 4) self-dual code with all its Hamming
weights multiple of 4. Therefore RS’ has also its Lee weights all multiple by 4. Now
let n be the one-to-one map of Z, onto GF (4) defined by 1 (0) =0, n (1) = a,, n (2)
=o?andn (3) =1. Son* (RSY) isanon linear code over Z, with al its homogeneous
weights multiple of 4.

Conclusion

We have shown in this paper that a homogeneous metric on Z,m can give rise to a
homogeneous metric over GF (p™) that can be extended on GF (p™) ". With the
materials developed in this paper, we know that, in some cases, a homogeneous
weight enumerator of a linear code over GF (p™) is exactly the Hamming weight
enumerator of one of its p-ary image.
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