Mildly (1, 2)*-πgα-Normal Spaces

K. Mohana¹ and I. Arockiarani²

 ¹Sr. Lecturer, Department of Quantitative Techniques, T. John College, Bangalore-560 083. India. E-mail: mohanamaths@yahoo.co.in
 ²Associate Professor, Department of Mathematics, Nirmala college for women, Coimbatore-641 018, India.

Abstract

The aim of this paper is to introduce and study some new classes of spaces, called Mildly $(1, 2)^* \pi g\alpha$ -normal spaces, almost $(1, 2)^* \alpha$ -normal spaces and Mildly $(1, 2)^* \alpha$ -normal spaces. Some properties of these separation axioms are studied by utilizing $(1, 2)^* \pi g\alpha$ -open sets.

2)^{*- α -normal spaces, mildly $(1, 2)^{*-}\alpha$ -normal spaces.}

2000 AMS Subject Classification: 54E55

Introduction

The concept of s-regular[6] and s-normal spaces[7] in topological spaces were introduced and studied by Maheshwari and Prasad. Arya and Nour [3] obtained some characterization of s-normal spaces. Munshi [10] introduced and studied the notions of g-regular and g-normal spaces using g-closed sets in topological spaces. Further Noiri and Popa [11] investigated the concepts introduced by Munshi [10]. Recently authors [1, 2, 4, 5] studied various functions in bitopological spaces. The aim of this

paper is to introduce and study some new classes of spaces, called Mildly $(1, 2)^*$ - $\pi g\alpha$ -

normal spaces, almost $(1, 2)^*$ - α -normal spaces and Mildly $(1, 2)^*$ - α -normal spaces. Some properties of these separation axioms are discussed.

Preliminaries

Throughout the present paper (X, τ_1 , τ_2), (Y, σ_1 , σ_2), (Z, η_1 , η_2) (briefly X, Y, Z)be bitopological spaces.

Definition 2. 1: [4] A subset S of a bitopological space(X, τ_1 , τ_2) is said to be τ_1 , 2open if S = A U B where A $\in \tau_1$ and B $\in \tau_2$. A subset S of X is said to be [1] τ_1 , 2closed if the complement of S is τ_1 , 2-open. [2] τ_1 , 2-clopen if S is both τ_1 , 2-open and τ_1 , 2-closed.

Definition 2. 2: [4] Let S be a subset of the bitopological space (X, τ_1, τ_2) . Then

[1] The $\tau_{1,2}$ -interior of S, denoted by $\tau_{1,2}$ -int(S) is defined by \cup {G:G \subseteq S and G is $\tau_{1,2}$ -open}.

[2] The $\tau_{1,2}$ -closure of S, denoted by $\tau_{1,2}$ -cl(S) is defined by \cap {F:S \subseteq F and F is $\tau_{1,2}$ -closed}.

Remark 2. 3: [4] $\tau_{1,2}$ -open sets need not form a topology.

Definition 2. 4: A subset A of a bitoplogical space (X, τ_1, τ_2) is called

[1] $(1, 2)^*$ -regular open[4] if A = $\tau_{1, 2}$ -int($\tau_{1, 2}$ - cl(A)).

[2] $(1, 2)^* - \alpha$ -open[4] if A = $\tau_{1, 2}$ - int($\tau_{1, 2}$ - cl($\tau_{1, 2}$ - int(A))).

[3] $(1, 2)^* - \pi g\alpha$ -closed [1] if $(1, 2)^* - \alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is $\tau_{1, 2} - \pi$ -open in X.

[4] $(1, 2)^*$ -ga-closed if $(1, 2)^*$ – $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is $(1, 2)^*$ – α -open in X.

The complement of the mentioned in [1], [2] are called their respective closed sets and the complement of the mentioned in [3] and [4] are called their respective open sets.

Definition 2. 5: A map f: $(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is called

[1] $(1, 2)^* \pi g\alpha$ -irresolute[2] if the inverse image of every $(1, 2)^* \pi g\alpha$ -closed in Y is (1, 2)* $\pi g\alpha$ -closed in X.

[2] completely $(1, 2)^*$ -continuous[5] if the inverse image of every $\tau_{1, 2}$ -open in Y is

 $(1, 2)^*$ -regular open in X.

[3] strongly- $(1, 2)^*$ - π ga-closed [8] if the image of every $(1, 2)^*$ - π ga-closed set in X

196

is $(1, 2)^*$ – $\pi g\alpha$ -closed in Y.

Definition 2. 6: A space (X, τ_1, τ_2) is said to be $(1, 2)^{*-\alpha}$ -normal if for every pair of disjoint τ_1 , 2-closed sets A and B of X, there exist disjoint $(1, 2)^{*-\alpha}$ -open sets U and V such that $A \subset U$ and $B \subset V$.

Definition 2. 7: [9] A space (X, τ_1, τ_2) is said to be $(1, 2)^* \pi g\alpha$ -normal if for every pair of disjoint τ_1 , 2-closed sets A and B of X, there exist disjoint $(1, 2)^* - \pi g\alpha$ -open sets U and V such that $A \subset U$ and $B \subset V$.

Mildly (1, 2)^{*-}πgα-Normal Spaces

Definition 3. 1: A space (X, τ_1, τ_2) is said to be Mildly $(1, 2)^* \pi g\alpha$ -normal if for every pair of disjoint $(1, 2)^*$ -regular closed sets A and B of X, there exist disjoint $(1, 2)^* \pi g\alpha$ -open sets U and V of X such that $A \subset U$ and $B \subset V$.

Example 3. 2 : Let X={a, b, c} and τ_1 ={ ϕ , X, {b}, {b, c}}, τ_2 ={ ϕ , X, {a}, {a, b}} then X is mildly (1, 2)*- π g α -normal.

Theorem 3. 3: Every mildly $(1, 2)^*$ -normal space is mildly $(1, 2)^*$ - $\pi g\alpha$ -normal. Proof: Straight forward.

Theorem 3. 4: For a space (X, τ_1 , τ_2) the following are equivalent. [1] X is mildly (1, 2)*- π g α -normal.

[2] For every pair of $(1, 2)^*$ -regular open sets U and V whose union is X, there exist $(1, 2)^*$ - $\pi g\alpha$ -closed sets G and H such that $G \subset U, H \subset V$ and $G \cup H = X$.

[3] For any $(1, 2)^*$ -regular closed set A and every $(1, 2)^*$ -regular open set B containing A, there exist a $(1, 2)^*$ – $\pi g \alpha$ -open set U such that $A \subset U \subset (1, 2)^*$ - $\pi g \alpha$ – $cl(U) \subset B$.

Proof: [1] \Rightarrow [2]. Let U and V be a pair of (1, 2)*-regular open sets such that $X = U \cup V$. Then $(X - U) \cap (X - V) = \varphi$. Since X is mildly $(1, 2)^* \pi g \alpha$ -normal there exist disjoint $(1, 2)^* \pi g \alpha$ -open sets U1 and V1 such that $X - U \subset U_1$ and $X - V \subset V_1$. Let $G = X - U_1$ and $H = X - V_1$. Then G and H are $(1, 2)^* \pi g \alpha$ -closed sets such that $G \subset U$, $H \subset V$ and $G \cup H = X$.

[2] ⇒ [3]. Let A be a (1, 2)*-regular closed set and B be an (1, 2)*-regular open set containing A. Then X-A and B are (1, 2)*-regular open sets whose union is X. Then by[2] there exist $(1, 2)^*$ - π g\alpha-closed sets W1 and W2 such that W1 ⊂ X −A and W2 ⊂ B and W1 ∪W2 = X. Then A ⊂ X −W1, X −B ⊂ X −W2 and (X −W1)∩(X −W2) = φ . Let U = X − W1 and V = X − W2. Then U and V are disjoint (1, 2)*- π g\alpha-open set such that A ⊂ U ⊂ X − V ⊂ B ⇒ A ⊂ U ⊂ (1, 2)*- π g\alpha-cl(U) ⊂ X − V ⊂ B.

[3] ⇒ [1]. Let A and B be any two disjoint $(1, 2)^*$ -regular closed subsets of X. Then A ⊂ X -B. Put G = X -B. Then G is an $(1, 2)^*$ -regular open set containing A. By[3] there exist a $(1, 2)^*$ - π ga-open set U of X such that A ⊂ U ⊂ $(1, 2)^*$ - π ga-cl(U) ⊂ G. It follows that B ⊂ X -(1, 2)*- π ga-cl(U). Let V = X -(1, 2)*- π ga-cl(U). Then V is a (1, 2)*- π ga-open set and U ∩V = φ . Therefore X is mildly $(1, 2)^*$ - π ga-normal.

Theorem 3. 5: If $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is a M-(1, 2)^{*-} π g α -open (1, 2)^{*-} π g α -normal space X onto Y then Y is mildly (1, 2)^{*-} π g α -normal.

Proof: Let A be a $(1, 2)^*$ -regular closed set and B be a $(1, 2)^*$ -regular open set in Y containing A. Then by $(1, 2)^*$ -rc continuity, f⁻¹ (A) is a $(1, 2)^*$ -regular closed set contained in the $(1, 2)^*$ -regular open set f⁻¹(B). Since X is mildly $(1, 2)^*$ - π ga-normal, there exist a $(1, 2)^*$ - π ga-open set V such that f⁻¹(A) \subset V \subset $(1, 2)^*$ - π ga-cl(V) \subset f⁻¹(B). As f is M-(1, 2)* – π ga-open and almost $(1, 2)^*$ - π ga-irresolute surjection,

it follows that $A \subseteq f(V) \subseteq (1, 2)^* \pi g\alpha - cl(f(V)) \subseteq B$. Hence Y is mildly $(1, 2)^* = \pi g\alpha$ -normal.

Theorem 3. 6: If $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is $(1, 2)^* \pi g\alpha$ -irresolute, $(1, 2)^*$ -rc-preserving injection and Y is mildly $(1, 2)^* - \pi g\alpha$ -normal then X is mildly $(1, 2)^* - \pi g\alpha$ -normal.

Proof: Let A and B be any two disjoint $(1, 2)^*$ -regular closed subsets of X. Since f is $(1, 2)^*$ -rc-preserving injection, f(A) and f(B) are disjoint $(1, 2)^*$ -regular closed sets of Y. By mildly $(1, 2)^*$ - π g α -normality of Y, there exist $(1, 2)^*$ - π g α -open sets U and V of Y such that f (A) \subset U and f (B) \subset V. f⁻¹ (U), f⁻¹ (V) are disjoint $(1, 2)^*$ – π g α -open sets A and B respectively. By Theorem [3. 4] X is mildly $(1, 2)^*$ – π g α -normal.

Theorem 3. 7: If $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is an $(1, 2)^* \pi g\alpha$ -irresolute, almost- $(1, 2)^*$ -closed injection and Y is $(1, 2)^* \pi g\alpha$ -normal, then X is mildly $(1, 2)^* \pi g\alpha$ -normal.

Proof: Let A and B be disjoint $(1, 2)^*$ -regular closed sets in X. Since f is almost $(1, 2)^*$ -closed injection, f(A) and f(B) are disjoint $\sigma_{1, 2}$ -closed sets in Y. Since Y is $(1, 2)^*$ - $\pi g \alpha$ -normal, there exist a $(1, 2)^*$ - $\pi g \alpha$ -open sets U and V such that $f(A) \subset U$ and f $(B) \subset V$ such that $U \cap V = \varphi$. Since f is $(1, 2)^*$ - $\pi g \alpha$ -irresolute, $f^{-1}(V)$, $f^{-1}(U)$ are $(1, 2)^*$ - $\pi g \alpha$ -open sets such that $A \subset f^{-1}(U)$ and $B \subset f^{-1}(V)$. By Theorem[3. 4], X is mildly $(1, 2)^*$ - $\pi g \alpha$ -normal.

Theorem 3. 8: If $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is completely $(1, 2)^*$ -continuous, M-(1, 2)*- π g\alpha-open surjection and X is mildly $(1, 2)^*$ - π g\alpha-normal then Y is $(1, 2)^*$ - π g\alpha-normal

Proof: Let A and B be disjoint $\sigma_{1,2}$ -closed subsets of Y. Since f is completely (1,

2)*-continuous, $f^{-1}(A)$ and $f^{-1}(B)$ are disjoint $(1, 2)^*$ -regular closed subsets of X. X is mildly $(1, 2)^*$ - $\pi g\alpha$ -normal implies that there exist $(1, 2)^*$ - $\pi g\alpha$ -open sets U and V in X such that $f^{-1}(A) \subset U$ and $f^{-1}(B) \subset V$. Since f is M- $(1, 2)^*$ - $\pi g\alpha$ -open surjection. Hence Y is $(1, 2)^*$ - $\pi g\alpha$ -normal.

Almost $(1, 2)^{*-\alpha}$ -normal and Mildly $(1, 2)^{*-\alpha}$ -normal spaces

Definition 4. 1: A space (X, τ_1, τ_2) is said to be

[1] almost $(1, 2)^{*-\alpha}$ -normal if for each $\tau_{1, 2}$ -closed set A and $(1, 2)^{*-\alpha}$ -regular closed set B of X, such that $A \cap B = \varphi$ there exist disjoint $(1, 2)^{*-\alpha}$ -open sets U and V such that $A \subset U$ and $B \subset V$.

[2] Mildly $(1, 2)^{*-\alpha}$ -normal if for every pair of disjoint $(1, 2)^{*-\alpha}$ -regular closed sets A and B of X, there exist disjoint $(1, 2)^{*-\alpha}$ -open sets U and V such that $A \subset U$ and $B \subset V$.

Lemma 4. 2: A subset A of a space X is $(1, 2)^* \pi g \alpha$ -open (resp. $(1, 2)^* g \alpha$ -open) iff F $\subset (1, 2)^* - \alpha$ intA whenever F is $(1, 2)^*$ -regular closed (resp. τ_1 , 2-closed) and F $\subset A$.

Theorem 4. 3: For a space (X, τ_1, τ_2) the following are equivalent.

[1] X is almost $(1, 2)^{*-\alpha}$ -normal.

[2] For each $\tau_{1, 2}$ -closed set A and $(1, 2)^*$ -regular closed set B such that $A \cap B = \varphi$, there exist disjoint $(1, 2)^*$ -g α -open sets U and V such that $A \subset U, B \subset V$.

[3] For each τ_1 , 2-closed set A and $(1, 2)^*$ -regular closed set B such that $A \cap B = \varphi$, there exist disjoint $(1, 2)^*$ - $\pi g \alpha$ -open sets U and V such that $A \subset U, B \subset V$.

[4] For each $\tau_{1, 2}$ -closed set A and each $(1, 2)^*$ -regular open set B containing A, there exist a $(1, 2)^*$ - $\pi g\alpha$ -open set V of X such that $A \subset V \subset (1, 2)^* - \alpha cl(V) \subset B$.

Proof: $[1] \Rightarrow [2], [2] \Rightarrow [3]$ is obvious.

[3] ⇒ [4]. Let A be a $\tau_{1, 2}$ -closed set and B be a (1, 2)*-regular open subset of X containing A. X-B is (1, 2)*-regular closed and by[3], there exist (1, 2)*- π g\alpha-open sets

V and W such that $A \subseteq V$ and $X - B \subseteq W$. By Lemma [4. 2] $X - B \subseteq (1, 2)^* - \alpha int(W)$ and $V \cap (1, 2)^* - \alpha int(W) = \varphi$. Therefore $(1, 2)^* - \alpha cl(V) \cap (1, 2)^* - \alpha int(W) = \varphi$ and hence $A \subseteq V \subseteq (1, 2)^* - \alpha cl(V) \subseteq X - (1, 2)^* - \alpha int(W) \subseteq B$.

[4] ⇒ [1]. Let A and B be $\tau_{1, 2}$ -closed set and $(1, 2)^{*}$ -regular closed sets respectively. Then X-B is $(1, 2)^{*}$ -regular open set containing A. By[4] there exist a $(1, 2)^{*-}\pi g\alpha$ open set G of X such that A ⊂ G ⊂ $(1, 2)^{*}$ – $\alpha cl(G) ⊂ X − B$, put U = $(1, 2)^{*}$ – $\alpha int(G)$ and V = X – $(1, 2)^{*}$ – $\alpha cl(G)$. Then U and V are disjoint $(1, 2)^{*-}\alpha$ -open sets of
X such that A ⊂ U and B ⊂ V. Hence X is almost $(1, 2)^{*-}\alpha$ -normal.

Theorem 4. 4: For a space (X, τ_1, τ_2) the following are equivalent.

[1] X is mildly $(1, 2)^* - \alpha$ -normal.

[2] For any disjoint $(1, 2)^*$ -regular closed sets A and B of X, there exist disjoint $(1, 2)^*$ -regular closed sets A and B of X.

2)^{*-}g α -open sets U and V such that A \subset U, B \subset V.

[3] For any disjoint $(1, 2)^*$ -regular closed sets A and B of X, there exist disjoint $(1, 2)^*$

2)^{*-} π g α -open sets U and V such that A \subset U, B \subset V.

[4] For each $(1, 2)^*$ -regular closed set A and each $(1, 2)^*$ -regular open set B containing A, there exist a $(1, 2)^*$ -ga-open set V of X such that $A \subset V \subset (1, 2)^* - \alpha cl(V) \subset B$.

[5] For each $(1, 2)^*$ -regular closed set A and each $(1, 2)^*$ -regular open set B containing A, there exist a $(1, 2)^*$ – $\pi g \alpha$ -open set V of X such that $A \subset V \subset (1, 2)^*$ – $\alpha cl(V) \subset B$.

References

[1] I. Arockiarani and K. Mohana, $(1, 2)^{*-\pi}$ g α -closed sets and $(1, 2)^{*-}$ Quasi- α -Normal Spaces In Bitopological Settings, Andartica Journal of Mathematics, 7(3)(2010), 345-355.

- [2] I. Arockiarani and K. Mohana, $(1, 2)^* \pi g\alpha$ -continuous functions in bitopological Spaces, Acta ciencia Indica, XXXVII, M. No. 4, 819-829, 2011.
- [3] S. P. Arya and T. Nour, Characterizations of s-normal spaces, Indian J. Pure Appl. Math., 21 (8) (1990), 717-719.
- [4] M. Lellis Thivagar and O. Ravi, On stronger forms of (1, 2)*-quotient mappings in bitopological spaces, Internat. J. Math. Game theory and Algebra., 14(6)(2004), 481-492.
- [5] M. Lellis Thivagar and O. Ravi, E. Ekici, Decompositions of bitopological (1, 2)*-continuity and complete (1, 2)*-continuity, Analele Universitatii Din Oradea-Fasicola Mathematica., 15(2008), 29-37.
- [6] S. N. Maheshwari and R. Prasad, On s-regular spaces, Glasnik Mat. Ser. III, 10(1975), 347-350.
- [7] S. N. Maheshwari and R. Prasad, On s-normal spaces, Bull. Math. Soc. Sci. Math. R. S. Roumanie, 22(1978), 27-29.
- [8] K. Mohana and I. Arockiarani, Remarks on strongly (1, 2)*-πgα-closed mappings, International Journal of Mathematical Archive, 2(8), 2011, Page No. 1286-1289.
- [9] K. Mohana and I. Arockiarani, (1, 2)*-πgα-normal spaces, Int. J. Contemp. Math. Sciences, Vol. 6, 2011, no. 29, 1433-1438.
- [10] B. M. Munshi, Seperation Axioms, Acta ciencia Indica, 12 (1986), 140-144.
- [11] T. Noiri and V. Popa, On g-regular spaces and some functions, Mem. Fac. Sci. Kochi Univ. Ser. A. Math., 20 (1999), 67-74.