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Abstract 
 

M-divergence is a measure of the directed divergence of a probability 
distribution ( )npppP ,,........., 21=  from another probability distribution 

( )nqqqQ ,,........., 21=  when the probabilities in both distributions are 
monotonic increasing or monotonic decreasing. 
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Introduction 
In 1999, Kapur and Sharma [2] introduced M-entropy and later the same was 
discussed in Ph.D. Thesis of S. Sharma [4]. In 1951 Kullback-Leibler [3] introduced 
the measure of directed divergence 
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 Kapur [1] defined measure of directed divergence 
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 Here in the present paper we have introduced the concept of measures of M-
Divergence corresponding to above measures of directed divergence. 
 The First Measure of M-Divergence 
 
The first such measure is defined by 
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 ;......21 nqqq <<< .......21 nppp <<<   (2) 
 
 Now 
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 Thus ( )QPD :1  is a convex function of nppp ,,........., 21 . 
 Its minimum value subject to 
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which is satisfied if 

 ....,,........., 2211 nn qpqpqp ===  
 
i.e. QP =    (3) 
 
so that the minimum value of ( )QPD :1  arises when QP =  and ( ) 0;1 ≥QPD .  
 We can use this ( )QPD :1  as a measure of M-divergence when both spi '  and 

sqi ' are monotonic increasing. 

 Thus when there are no constraints except the natural constraint 1
1

=∑
=

n

i
ip  and the 

inequality constraints ,0≥ip ,,.......,2,1,1 1 nipp ii =≥≥ −  the minimum M-divergence 
probability distribution is given by (3) and is same as the apriori distribution. 
 
The Second Measure of M-Divergence 
The second such measure is defined by 
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subject to 

 nqqq <<< ............21  ;  .............21 nppp <<<   (5) 
 
 Now 
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 Thus ( )QPD :2  is a convex function of .,,........., 21 nppp  
 Its minimum value subject to 

 
1

1

=∑
=

n

i
ip  

 
is given by 

 1

1

1

1

12

23

12

23

1

12

1

12 .,,.........,,
11 −

+

−

+

−
−

=
−
−

−
−

=
−
−

+
−

=
+
−

nn

nn

nn

nn

qq

qq

pp

pp

qq

qq

pp

pp

aq

qq

ap

pp   

 
which is satisfied if 

 ....,,........., 2211 nn qpqpqp ===  
 
i.e. QP =    (6) 
 
so that the minimum value of ( )QPD :2  arises when QP =  and ( ) 0;2 ≥QPD . 
 We can use this ( )QPD :2  as a measure of M-divergence when both spi '  and sqi '
are monotonic increasing. 

 Thus when there are no constraints except the natural constraint 1
1

=∑
=

n

i
ip  and the 

inequality constraints ,0≥ip ,,.......,2,1,1 1 nipp ii =≥≥ −  the minimum M-divergence 
probability distribution is given by (6) and is same as the apriori distribution. 
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