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Abstract

The concept of quasi differentiability was introduced in 1995 by A.Bayoumi
and this Differentiability is stronger than Frechet differentiability. In this
paper, a new concept of differentiability ‘Weak Quasi Differentiable Maps
has been introduced and it’s some characterizations like linearity, Lipschitzian
property chain rule and etc. have been derived.
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Introduction
Differentiability of a function on normed spaces is the most important concept in
anaysis. Frechet and Gateaux differentiability of a function on normed spaces some
kind of differentiability [1, 2, 3].

In 1995, A. Bayoumi [4, 5] introduced a concept of differentiability, is known as
quasi-differentiability in F-spaces.

Let E and F be p-normed space and g-normed space respectively (0< p,q<1)
anduU , open subset of E.

A mapping f :U — F issaid to be mquas differentiable or m pq differentiable

atacU , if thereexistsalinear mapT, € L(E, F), such that

m

imll (0= T@-T.0-aI" (1.1)

Ix-al|”

T, iscaled pq -differential or quasi differential of function f at point a
If m=1
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Then this mapping is known as super differentiable mapping at a.
i.e. for everye >0, there exists & > 0 such that

0<[x-a] <5
= 10— f@-T.(x-a) [ <sllx-al
a
e I f(a+h)-f@-T.()I<elh]P° (1.2)

Furthermore, A. Bayoumi [6, 7] discussed the various properties of pq -

differentiable mappings. In 2006, A. Bayoumi [8] shows that Quasi differentiability
of maps may not be Frechet differentiability of maps by some examples. The
definition of weak holomorphic map [9] is

Let E and F betwo complex normed space, and let U be open subset of E.

A mapping f :U — F issaid to be weak holomorphic on U if

Lo f:U — C isholomorphicfor every A e F~

In this note the weak quasi differentiable map between locally bounded spaces and
some characterizations of this map have been derived.

In section 2 the concept of ‘Weak quas tangent’ and ‘weak quas differentiable
maps is introduced. In section 3 some properties of this map is derived, and at last in
section 4 aresult related mapping into product space is derived.

Weak quasi differentiable maps
Let E and F be a p-normed space and g-normed space respectively (0< p,q<1)

and U, beopeninE.

2.1 Mappingsf,g: U-F are weak quas tangent to each other if (yof)and (yoQ)
are quas tangent to each other at a

e i 16 ° D= 2 @)

lim - =0, Vyel(F) (21)
[x-al»

2.2 A mapping: f:U — Fissaidto beweak m-quas differentiable mapif y o f is
m-quasi differentiable map for everyy e F .

i.e.a aeU, if 3a continuous linear mapping w T a a (T € L(E,F) and by the
definition of quas differentiable map) such that

e - o )@ eT)(x-a) " _, (22)

lIx-all®

lim

X—a
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Ifm=1, f iscaled weak quas differentiableat a.
Hence, for everye> 0,36 >0: 0<||x—-a||<J .

= e H)XN-we f)@-(weT),(x-a)ll<slx-al’ (2.3)

If fisweak quas differentiable at each point of U,then f is said to be weak
quasi differentiableon U .

Properties of weak quas differentiable map
Theorem 3.1: (Linearity) The set of weak quas differentiable mappings at acU
form avector space.

Proof: Let S bethe set of weak quasi differentiable mappings.
If f,geS, then by definition of weak quas differentiable map, there exist linear

mappings
(poT), and (woT'),eL(F) foral weF

such that
1 1
1o D))~ )@~ =T (x-B) < [ x-all (31)
||(wog)(x)—(wog)(a)—(zm*)a(x—a)||5s§||x—a||E (3.2
1
For agiven ¢~ 0. since -1 isaweak quas norm.
(o f+yog)(X)—(wef+wog)(a) !

~(WoT+yoT ), (x-a)I"
1

<ol e - D)@ - D= I + 1 (2 9~ (2 9@~ ( o T'), (x-a) )

1
Dividing on both sides by || x—a||” and taking limit x —»>a

1

lof+yog)X)—(wof+yog)@—(yeT+yoT),(x-a)|

lim
. lIx-al®
)
< olim 12 N =2 @) - =T, (x-) I
o Ix-al®
i 1072900~ 2 9)(@) ~ (v =T, (x - a) ||§]

X—>a

IIx-all®

= D(yef+yeg)(@=D(y-f)@)+Dy-g)a) (3.3)
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Let 4#0 beascalar

Now, we have to prove
D(A(y » f)(a)) = AD(y ° f)(a)
A#0

For D(ﬂ' ' WOf )(a)

1AL = £)09— (= F)(@) — ( o T), (x-a)] I

I x-al®

lim

X—a

1

A = £)(0 = Al = £)(@) = Ay o T), (x-3) |

lIx—all®

= D(4-(yef)(@)=1D(y - f(a)) (34)

=lim

X—a

Theorem 3.2: (Lipschitzian property) Let Eand F be p-normed and q-normed
spaces respectively, (0< p,q<1) and U,openinE.

If f:U — Fisweak quas differentiable map ata<U , then there exist ¢ > 0and
6 > 0such that

q

lwo )X -(we )@ lI<clx-al
for xeU,||x-alk&.
Proof: Let T =D 1)(a)
A =W o D) - (o 1@ -T(x-a) for xeU (35)

Then
(o f)(X)=(wof)@)l=IT(x=a)+A(X)]l

9 9
<ITIFIx=all” +llax) ¢ ITx=a) < IT Il x-all®)

Since

p
|imM=o and aqa)-o0
a|x—all

e==,30>0

,A0
Given 2 such that
| x-alk d, xeU, then
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1800l S x-alP

Therefore

1= D00 o D@ AT I+ lIx-all

q

= |l H-weH@l<clx-al’ (3.6)

where c=||T|° +%.

Theorem 3.3: (ChainRule). Let f :U — F beweak quas differentiableat acU and
let T e L(F,G) where E,F are p-normed space and g-normed space and U isopen
in E, then (To f) isweak quas differentiableat acU .

Proof: We have to prove,
(T o f) isweak quasi differentiable at a
= wo(Tof) isquas differentiable at a.

Let S=Tof

Therefore

1 © 9)(X) ~ (> S)(8) ~y o D(S(x-a) [ = [[(S(x) — S(@) - DS(x-a) |[

1 1

< lw 117 11 S(x) - S(8) - D(S)(x-a) ||

1
Dividing on both sides by || x—a||® and
Taking the limx — a, we get

Il (w 2 S)(X) - ( © S)(8) -y o DS(x—a) | 1% Il S(x) - S(@) - DS(x—a) |I*
lIx-al” Ix-af]

N IFI(T o £)(X)~ (T f)(@) - D(T o f)(x-a) ||

I x-all’

I IFICT o £)(x)— (T o £)(@)— (T o Df )(x—a) |1

Ix-all®
1 1 1

Ny IFIT I° L f(x) - f(a) - Df (x—a) |I* -0

IIx-all®



254 Sushil Kumar

= Tof isweak quas differentiable.

Mapping into product space

Theorem 4: Let U — Ebe open in a p-normed space Eand F, -normed spaces

(n=1,2...m). A mapping f:U—>FxF,xF,---F, isweak quas differentiable at

acU if and only if each coordinate map f, =7, o f isweak quasi differentiable ata
Further Df (a) = (Df,(a), Df,(a)... Df (a))

where 7, isthe projection from F xF,xF,...xF_ onto F,.

Proof: Let F, be p,-normed spacesfor n=1,2...m.
Andlet F =F xF,xFx...xF,
Then F isan F -gpace and topology induced by an F -norm on F , is the product

topology.
Let 7,:F —>F, be the projection mappings onto the n" factor F, and let

u,:F, — F benatura embedding map defined by
u,(x,)=(0,0,...0,x%,,0,0...0)

Then both 7, and u, are continuous linear maps.
70U, =1 (theidentify maponF,)
>u.or, =1 (theidentify map onF )

Let U bean open subset of Eandlet f :U — F and let
f,=m,0f :U —F, bethe n"coordinate map. Then

f = Zlu” oz, 0f = Z:;lu,]o f,= (., fyen )

So, if fisweak quas differentiable ata, then u, oz, is quas differentiable ata,
then by chain rule (Theorem 3.3)
f(a)= Zun o Df (&)
=(Df,(a), Df,(a)...Df (a))

Conversely
If each f is weak quas differentiable at a then fis clearly weak quasi
differentiable ata.
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