Generalization of Quasi-Differentiable Maps

Sushil Kumar

Applied Science Department, Bharati Vidhyapeeth's College of Engineering, New Delhi-110063, India E-mail: sushilkumar16n@gmail.com

Abstract

The concept of quasi differentiability was introduced in 1995 by A.Bayoumi and this Differentiability is stronger than Frechet differentiability. In this paper, a new concept of differentiability 'Weak Quasi Differentiable Maps' has been introduced and it's some characterizations like linearity, Lipschitzian property chain rule and etc. have been derived.

2000 Mathematics Subject Classification: 46A16, 46E50

Keywords: Quasi differentiable map, Chain rule, Frechet Differentiable map

Introduction

Differentiability of a function on normed spaces is the most important concept in analysis. Frechet and Gateaux differentiability of a function on normed spaces some kind of differentiability [1, 2, 3].

In 1995, A. Bayoumi [4, 5] introduced a concept of differentiability, is known as quasi-differentiability in *F*-spaces.

Let *E* and *F* be *p*-normed space and *q*-normed space respectively $(0 < p, q \le 1)$ and *U*, open subset of *E*.

A mapping $f: U \to F$ is said to be *m*-quasi differentiable or *m pq* differentiable at $a \in U$, if there exists a linear map $T_a \in L(E, F)$, such that

$$\lim_{x \to a} \frac{\|f(x) - f(a) - T_a(x - a)\|^{\frac{m}{q}}}{\|x - a\|^{\frac{1}{p}}} = 0$$
(1.1)

 T_a is called pq -differential or quasi differential of function f at point a

If
$$m = 1$$

Then this mapping is known as super differentiable mapping at a.

i.e. for every $\varepsilon > 0$, there exists $\delta > 0$ such that

$$0 < ||x-a|| < \delta$$

$$\Rightarrow \qquad ||f(x)-f(a)-T_a(x-a)|| \le \varepsilon ||x-a||^{\frac{q}{p}}$$
i.e.
$$||f(a+h)-f(a)-T_a(h)|| \le \varepsilon ||h||^{\frac{q}{p}}$$
(1.2)

Furthermore, A. Bayoumi [6, 7] discussed the various properties of pq-differentiable mappings. In 2006, A. Bayoumi [8] shows that Quasi differentiability of maps may not be Frechet differentiability of maps by some examples. The definition of weak holomorphic map [9] is

Let *E* and *F* be two complex normed space, and let *U* be open subset of *E*. A mapping $f: U \to F$ is said to be weak holomorphic on *U* if $\lambda \circ f: U \to C$ is holomorphic for every $\lambda \in F^*$

In this note the weak quasi differentiable map between locally bounded spaces and some characterizations of this map have been derived.

In section 2 the concept of 'Weak quasi tangent' and 'weak quasi differentiable maps is introduced. In section 3 some properties of this map is derived, and at last in section 4 a result related mapping into product space is derived.

Weak quasi differentiable maps

Let *E* and *F* be a *p*-normed space and *q*-normed space respectively $(0 < p, q \le 1)$ and *U*, be open in *E*.

2.1 Mappings f,g: U \rightarrow F are weak quasi tangent to each other if $(\psi \circ f)$ and $(\psi \circ g)$ are quasi tangent to each other at *a*

i.e.
$$\lim_{x \to a} \frac{\|(\psi \circ f)(x) - (\psi \circ g)(x)\|_{q}^{\frac{1}{q}}}{\|x - a\|_{p}^{\frac{1}{p}}} = 0, \quad \forall \psi \in L(F)$$
(2.1)

2.2 A mapping: $f: U \to F$ is said to be weak *m*-quasi differentiable map if $\psi \circ f$ is *m*-quasi differentiable map for every $\psi \in F^*$.

i.e. at $a \in U$, if \exists a continuous linear mapping $\psi \circ T$ at $a \ (T \in L(E, F))$ and by the definition of quasi differentiable map) such that

$$\lim_{x \to a} \frac{\|(\psi \circ f)(x) - (\psi \circ f)(a) - (\psi \circ T)_a(x - a)\|^{\frac{-\alpha}{q}}}{\|x - a\|^{\frac{1}{p}}} = 0$$
(2.2)

If m = 1, f is called weak quasi differentiable at a. Hence, for every $\in > 0, \exists \delta > 0 : 0 < || x - a || < \delta$. $\Rightarrow ||(\psi \circ f)(x) - (\psi \circ f)(a) - (\psi \circ T)_a(x - a) || \le \varepsilon || x - a ||^{\frac{q}{p}}$ (2.3)

If f is weak quasi differentiable at each point of U, then f is said to be weak quasi differentiable on U.

Properties of weak quasi differentiable map

Theorem 3.1: (Linearity) The set of weak quasi differentiable mappings at $a \in U$ form a vector space.

Proof: Let *S* be the set of weak quasi differentiable mappings. If $f, g \in S$, then by definition of weak quasi differentiable map, there exist linear mappings

$$(\psi \circ T)_a$$
 and $(\psi \circ T^*)_a \in L(F)$ for all $\psi \in F^*$

such that

$$\|(\psi \circ f)(x) - (\psi \circ f)(a) - (\psi \circ T)_{a}(x-a)\|^{\frac{1}{q}} \le \frac{\varepsilon}{2} \|x-a\|^{\frac{1}{p}}$$
(3.1)

$$\|(\psi \circ g)(x) - (\psi \circ g)(a) - (\psi \circ T^{*})_{a}(x-a)\|^{\frac{1}{q}} \le \frac{\varepsilon}{2} \|x-a\|^{\frac{1}{p}}$$
(3.2)

For a given $\mathcal{E} > 0$, since $\|\cdot\|^{\frac{1}{q}}$ is a weak quasi norm. $\|(\psi \circ f + \psi \circ g)(x) - (\psi \circ f + \psi \circ g)(a) - (\psi \circ T + \psi \circ T^*)_a(x-a)\|^{\frac{1}{q}}$ $\leq \sigma(\|(\psi \circ f)(x) - (\psi \circ f)(a) - (\psi \circ T)_a(x-a)\|^{\frac{1}{q}} + \|(\psi \circ g)(x) - (\psi \circ g)(a) - (\psi \circ T^*)_a(x-a)\|^{\frac{1}{q}})$

Dividing on both sides by $||x-a||^{\frac{1}{p}}$ and taking limit $x \to a$

$$\lim_{x \to a} \frac{\|(\psi \circ f + \psi \circ g)(x) - (\psi \circ f + \psi \circ g)(a) - (\psi \circ T + \psi \circ T^{*})_{a}(x-a)\|^{\overline{q}}}{\|x-a\|^{\overline{p}}} \leq \sigma [\lim_{x \to a} \frac{\|(\psi \circ f)(x) - (\psi \circ f)(a) - (\psi \circ T)_{a}(x-a)\|^{\overline{q}}}{\|x-a\|^{\overline{p}}} + \lim_{x \to a} \frac{\|(\psi \circ g)(x) - (\psi \circ g)(a) - (\psi \circ T^{*})_{a}(x-a)\|^{\overline{q}}}{\|x-a\|^{\overline{p}}}] \Rightarrow D(\psi \circ f + \psi \circ g)(a) = D(\psi \circ f)(a) + D(\psi \circ g)(a)$$
(3.3)

(3.5)

Let $\lambda \neq 0$ be a scalar Now, we have to prove $D(\lambda(\psi \circ f)(a)) = \lambda D(\psi \circ f)(a)$ $\lambda \neq 0$ For $D(\lambda \cdot \psi \circ f)(a)$ $\lim_{x \to a} \frac{\|\lambda[(\psi \circ f)(x) - (\psi \circ f)(a) - (\psi \circ T)_a(x-a)]\|^{\frac{1}{q}}}{\|x-a\|^{\frac{1}{p}}}$ $= \lim_{x \to a} \frac{\|\lambda(\psi \circ f)(x) - \lambda(\psi \circ f)(a) - \lambda(\psi \circ T)_a(x-a)\|^{\frac{1}{q}}}{\|x-a\|^{\frac{1}{p}}}$ $\Rightarrow D(\lambda \cdot (\psi \circ f)(a) = \lambda D(\psi \circ f(a))$ (3.4)

Theorem 3.2: (Lipschitzian property) Let *E* and *F* be *p*-normed and *q*-normed spaces respectively, $(0 < p, q \le 1)$ and *U*, open in *E*.

If $f: U \to F$ is weak quasi differentiable map at $a \in U$, then there exist c > 0 and $\delta > 0$ such that

$$\|(\psi \circ f)(x) - (\psi \circ f)(a)\| \le c \|x - a\|^{\frac{q}{p}}$$

for $x \in U$, $||x - a|| < \delta$.

Proof: Let $T = D(\psi \circ f)(a)$ $\Delta(x) = (\psi \circ f)(x) - (\psi \circ f)(a) - T(x-a) \text{ for } x \in U$

Then

$$\| (\psi \circ f)(x) - (\psi \circ f)(a) \| = \| T(x-a) + \Delta(x) \|$$

$$\leq \| T \|^{q} \| x - a \|^{\frac{q}{p}} + \| \Delta x \| \quad (\because \quad \| T(x-a) \| \leq \| T \|^{q} \| x - a \|^{\frac{q}{p}})$$

Since

 $\lim_{x \to a} \frac{\|\Delta(x)\|^p}{\|x-a\|^q} = 0 \quad \text{and} \quad \Delta(a) = 0$

Given $\in =\frac{1}{2}, \exists \delta > 0$ such that $||x-a|| \leq \delta, x \in U$, then

$$||\Delta(x)|| \le \frac{1}{2} ||x-a||^{\frac{q}{p}}$$

Therefore

$$\|(\psi \circ f)(x) - (\psi \circ f)(a)\| \le (\|T\|^{q} + \frac{1}{2}) \|x - a\|^{\frac{q}{p}}$$

$$\Rightarrow \|(\psi \circ f)(x) - (\psi \circ f)(a)\| \le c \|x - a\|^{\frac{q}{p}}$$
(3.6)

where $c = ||T||^{q} + \frac{1}{2}$.

Theorem 3.3: (Chain Rule). Let $f: U \to F$ be weak quasi differentiable at $a \in U$ and let $T \in L(F,G)$ where E, F are *p*-normed space and *q*-normed space and *U* is open in *E*, then $(T \circ f)$ is weak quasi differentiable at $a \in U$.

.

Proof: We have to prove,

- $(T \circ f)$ is weak quasi differentiable at a
- $\Rightarrow \psi \circ (T \circ f)$ is quasi differentiable at *a*.

Let $S = T \circ f$

Therefore

$$\|(\psi \circ S)(x) - (\psi \circ S)(a) - \psi \circ D(S(x-a))\|^{\frac{1}{q}} = \|\psi(S(x) - S(a) - DS(x-a))\|^{\frac{1}{q}}$$

$$\leq \|\psi\|^{\frac{1}{q}} \|S(x) - S(a) - D(S)(x-a)\|^{\frac{1}{q}}$$

Dividing on both sides by $||x-a||^{\frac{1}{p}}$ and Taking the $\lim x \to a$, we get

$$\frac{\|(\psi \circ S)(x) - (\psi \circ S)(a) - \psi \circ DS(x-a)\|^{\frac{1}{q}}}{\|x-a\|^{\frac{1}{p}}} \leq \frac{\|\psi\|^{\frac{1}{q}}\|S(x) - S(a) - DS(x-a)\|^{\frac{1}{q}}}{\|x-a\|^{\frac{1}{p}}}$$

$$= \frac{\|\psi\|^{\frac{1}{q}}\|(T \circ f)(x) - (T \circ f)(a) - D(T \circ f)(x-a)\|^{\frac{1}{q}}}{\|x-a\|^{\frac{1}{p}}}$$

$$= \frac{\|\psi\|^{\frac{1}{q}}\|(T \circ f)(x) - (T \circ f)(a) - (T \circ Df)(x-a)\|^{\frac{1}{q}}}{\|x-a\|^{\frac{1}{p}}}$$

$$= \frac{\|\psi\|^{\frac{1}{q}}\|(T \circ f)(x) - (T \circ f)(a) - Df(x-a)\|^{\frac{1}{q}}}{\|x-a\|^{\frac{1}{p}}} \to 0$$

 \Rightarrow $T \circ f$ is weak quasi differentiable.

Mapping into product space

Theorem 4: Let $U \subset E$ be open in a *p*-normed space *E* and F_n -normed spaces (n = 1, 2...m). A mapping $f: U \to F_1 \times F_2 \times F_3 \cdots F_n$ is weak quasi differentiable at $a \in U$ if and only if each coordinate map $f_n = \pi_n \circ f$ is weak quasi differentiable at *a* Further $Df(a) = (Df_1(a), Df_2(a) \dots Df_m(a))$

where π_n is the projection from $F_1 \times F_2 \times F_3 \dots \times F_m$ onto F_n .

Proof: Let F_n be p_n -normed spaces for n = 1, 2...m.

And let $F = F_1 \times F_2 \times F_3 \times \ldots \times F_n$

Then F is an F-space and topology induced by an F-norm on F, is the product topology.

Let $\pi_n: F \to F_n$ be the projection mappings onto the n^{th} factor F_n and let $u_n: F_n \to F$ be natural embedding map defined by

 $u_n(x_n) = (0, 0, \dots, 0, x_n, 0, 0, \dots, 0)$

Then both π_n and u_n are continuous linear maps.

 $\pi_n o u_n = 1_{F_n}$ (the identify map on F_n)

 $\sum u_n o \pi_n = \mathbf{1}_F$ (the identify map on *F*)

Let *U* be an open subset of *E* and let $f: U \to F$ and let $f_n = \pi_n of: U \to F_n$ be the n^{th} coordinate map. Then $f = \sum_{n=1}^m u_n \circ \pi_n of = \sum_{n=1}^m u_n \circ f_n = (f_1, f_2 \dots f_m)$

So, if *f* is weak quasi differentiable at *a*, then $u_{\eta} \circ \pi_n$ is quasi differentiable at *a*, then by chain rule (Theorem 3.3)

$$f(a) = \sum u_n \circ Df_n(a)$$

= $(Df_1(a), Df_2(a) \dots Df_m(a))$

Conversely

If each f_n is weak quasi differentiable at a then f is clearly weak quasi differentiable at a.

References

- [1] H.Cartan, 1971, Differential Calculus, Hermann, Paris.
- [2] Walter Rudin, 1973, Functional Analysis, McGrahil.
- [3] J Muzica, 1986, Complex Analysis in Banach Spaces, North Holland Math. Studies.
- [4] A. Bayoumi, 2003, Foundations of complex analysis in Non locally convex spaces, North Holland Publication, Mathematics Studies.
- [5] A. Bayoumi, 2006, "Super differential calculus in *F* -spaces", Research report in mathematics, no 7.
- [6] A. Bayoumi, 1997, "Mean value theorem for complex bounded locally space", Communication in Applied Non-linear Analysis (4), pp. 91-103.
- [7] A. Bayoumi, 2005, "Bolzano's Intermediate-value theorem for quasiholomorphic maps", Central European Journal of Mathematics, 3(1), pp. 76-82.
- [8] Soo Bong Chae, Holomorphy and calculus in Normed spaces, Marcel Dekker, Inc., New York.
- [9] A. Bayoumi, 2006, "Bayoumi differential map is different from Frechet Differential map", Central European Journal of Mathematics, 4(4), pp., 585-593.