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Abstract

In this paper we have studied Generalised ¢-recurrent N (k)-contact metric
manifolds and obtained some important results.
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Introduction
Let M be an (2n + 1)-dimensional connected Riemannian manifold with Riemannian
metric g and Levi-Civita connection V . M is called locally symmetric if its curvature
tensor is parallel with respect to V. The notion of local symmetry has been weakend
by many authors in different ways such as recurrent manifold by Walker[26], semi
symmetric manifold by Szabo[18], pseudo-symmetric manifold by Chaki [13], and
Deszcz[16], weakly symmetric manifold by Tammasy and Binh[25], and
Selberg[17]. As a weaker version of local symmetry, Takahashi [23] introduced the
notion of local ¢-symmetry on a Sasakian manifold. Extending this notion of local ¢-
symmetry, Takahashi[23] and De et al [14] introduced and studied the notion of ¢ -
recurrent Sasakian manifolds. Extending the notion of ¢-recurrency, Generalised ¢-
recurrent manifolds were studied by many geometers in their papers ([1], [3], [4],
[15], [21], [22]).

In the present paper we study Generalised ¢-recurrent N(k) -contact metric
manifold. The paper is organized as follows :

Section 2 contains necessary basic details about contact metric manifolds, (k, i)
manifolds and N (k) contact meric manifold. In Section 3, we have proved that a
Generalised ¢-recurrent N (k)-contact metric manifold is an n-Einstein manifold
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with constant coefficients. Further it is shown that in a Generalised ¢-recurrent
N (k) —contact metric manifold the characteristic vector field ¢ and the vector field p
associated to the 1-form A are co-directional. Finally in Section 4, we have studied
3-dimensional Generalised ¢-recurrent N (k) —contact metric manifold and it is
shown that such a manifold is of constant curvature.

Contact Metric Manifolds
A (2n + 1)-dimensional manifold M is said to admit an almost contact structure if it
admits a tensor field ¢ of type (1,1), a vector field & and a 1-form 7 satisfying:

2.1) (@) ¢*X)==X+n()§, (b) n()=1, (c) nog =0, (d) p¢=0.

An almost contact metric structure is said to be normal if the induced almost
complex structure J on the product manifold M x R defined by

JX. f9) = (X = f& n(X) D)

is integrable, where X is tangent to M, t is the coordinate of R and f is a smooth
function on M X R. Let g be a compatible Riemannian metric with almost contact
structure (¢, §,1), that is,

(2.2) g(@X, Y )=gX,Y ) —nXn¥ ),

then M becomes an almost contact metric manifold equipped with an almost contact
structure (¢, &,1n, g). From (2.1) it can be easily seen that

(2.3) (@) gX, oY) =—g(@X,Y), (b) g(X,$) = n(X)

for all vector fields X,Y. An almost contact metric structure becomes a contact
metric structure if

(2.4) gX, oY) = dn(X,Y),

for all vector fieldsX,Y. The I-formn 1is then a contact form and ¢ is its
characteristic vector field. We define a (1,1) tensor field hby h = %£§c|) where £

denotes the Lie-differentiation, then h is symmetric and satisfies hgp = —¢@ph. We
have Tr.h = Tr.ph = 0 and hé = 0. Also,
(2.5) Vx§ = —@X — @hX,

holds in a contact metric manifold. A normal contact metric manifold is a sasakian
manifold. An almost contact metric manifold is Sasakian if and only if

(2.6) (Vxp)(¥) = gX,Y)¢E— n(V)X, X,Y € TM,

where V is the Levi-Civita connection of the Riemannian metric g. A contact metric
manifold M (¢,¢&,1m,g) for which ¢ is a killing vector is said to be a K-contact
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manifold. It is well known that the tangent sphere bundle of a flat Riemannian
manifold admits a contact metric structure satisfying R(X,Y )¢ = 0 [5]. On the other
hand, on a Sasakian manifold the following holds

2.7) R(X,Y)¢&=n({ )X —nX)Y.

As a generalisation of both R(X,Y )é = 0and the Sasakian case; D.Blair, T.
Koufogiorgos and B.J. Papantoniou[9] considered the (k, ) —nullity condition on a
contact metric manifold and gave several reasons for studying it. The (k, u)- nullity
distribution N (k, u) ([6], [7]) of a Contact metric manifold M is defined by

N(k,u): p = Np(k, )
= (W € TpM : RX, Y)W = (kI + uh)[g(Y, W)X — g(X, W)Y ]},

for all X,Y € TM, where (k,u) € R?* . A contact metric manifold M with & €
N(k,u) is called a (k, ) —manifold. In particular on a (k, u) —manifold, we have

(2.8) RX,Y) & = k[n(Y )X —n(X)Y ]| + un(Y )hX — (mX)hY ].

On a (k, u)-manifold k < 1. If k = 1, the structure is Sasakian (h =0 and p is
indeterminate) and if k < 1, the (k, p)-nullity condition determines the curvature of
M completely[6]. Infact, for a (k, p)-manifold, the condition of being a Sasakian

manifold, k-contact manifold,k = 1 andh= 0 are all equivalent. In a

(k, ) —manifold the following relations hold ([6], [8]) :

(2.9) h?=(k — Dg? k <1

(2.10) (Vap)(¥) = g(X + hX, Y)§ —n(¥ )X + hX),

@.11) REEX)Y = k[g(X,Y) € —n (N)X] + ulg(hX, ¥)E —n(Y HhX],

(2.12) S(X, &) = 2nkn(X),

(2.13) SX,Y) =[2n —1) — nulgX,Y) + [2(n — 1) + u]g(hX,Y)
+[2(1 = n) + nCk + Win X (¥), n =21,

(2.14) r =2n(2n — 2 + k — np),

(2.15) S(pX,pY ) = SX,Y) — 2nkn(X)n(Y) — 2(2n — 2+ w)g(hX,

Y),

where S is the Ricci tensor of type (0, 2), Q is the Ricci-operator, that is g(QX,Y ) =
S(X,Y ) and r is the scalar curvature of the manifold. From (2.5), it follows that

(2.16) V. (Y) = g(X + hX, ¢Y).

Also in a (k, u) —manifold,
(2.17) n(RX,Y)Z) = k[g(Y,Z)n(X) — g(X,Z)n(¥)]
+ulg(hY, Z)n(X) — g(hX,Z)n(Y)]
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holds.
The k-nullity distribution N (k) of a Riemannian manifold M [9] is defined by

N(k): p - Np(k) = {Z€TpM: RX,Y)Z = g(Y,2)X — g(X,2)Y },

k being a constant. If the characteristic vector field & € N(k), then we call a contact
metric manifold an N(k) —contact metric manifold [10] . If k = 1, then
N (k) —contact metric manifold is Sasakian and if k = 0, then N (k)-contact metric
manifold is locally isometric to the product E"*1x $™(4) for n > 1 and flat forn = 1.
If k < 1, the scalar curvature is v = 2n(2n — 2 + k). If u = 0, then (k, u) —contact
metric manifold reduces to a N(k) —contact metric manifold. In a N(k) —contact
metric manifold the following relations hold :

(2.18) 2= (k — Dg? k <1

(2.19) (Vap)(¥) = g(X + hX, Y)§ —n(¥)(X + hX),
(2.20) RE,X)Y = k[g(X,Y)E —n (V)X],

2.21) S(X,&) = 2nkn(X),

(2.22) S(X,Y) = [2(n — 1]g(X,Y) + [2(n — 1)]g(hX,Y)
(2.23) +[2(1 —n) + 2nkln(X)n(Y), n=>1

(2.24) r=2n2n — 2 + k),

(2.25) S(pX,pY) = S(X,Y) — 2nkn(X)n(Y) —4(n—1)g(hX, Y),
(2.26) W) (V) = g(X + hx, oY),

(2.27) R(X,Y)¢ = k[n(V)X —nX)Y],

(2.28) nRX,Y)Z) = klg(Y,Z)n(X) — g(X,Z) n(Y)

Generalized ¢@-recurrent N(k) —contact metric manifolds
Definition 3.1. A N(k) —contact metric manifold is said to be locally ¢@-symmetric if
the relation

»*((VWR)(X,Y)Z) = 0,
holds for all vector fields X, Y, Z, W orthogonal to &.

Definition 3.2. A N(k) —contact metric manifold is said to be ¢ -recurrent if and
only if there exists a non-zero 1-form A such that

P (VWR(X,Y)Z) = AW)R(X,Y)Z,

for all vector fields X,Y,Z and W. Here X,Y,Z and W are arbitrary vector fields
which are not necessarily orthogonal to €.
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Definition 3.3. A N(k) —contact metric manifold is said to be generalised ¢-

recurrent if and only if there exists a non-zero 1-form A such that

(3.1) P*((V,R)(X,Y)Z) = AW)R(X,Y)Z + B(W)[g(Y,2)X
—9X,2)Y],

for all vector fields X,Y,Z and W. Here X,Y,Z and W are arbitrary vector fields
which are not necessarily orthogonal to €.

Definition 3.4. A Contact manifold is said to be 7 -Einstein if the Ricci tensor S of

type (0, 2) satisfies the condition
3.2) SX,)Y) =agX,Y)+bn(X)n(),

where a and b are smooth functions on M.

Theorem 3.1. A Generalized ¢-recurrent N (k) —contact metric manifold is an 7 —
Einstein manifold with constant coefficients.

Proof. By virtue of (2.1) (a) and (3.1) we have

(3.3) ~((VWRX,Z) + 1 (VWR)(X,Y)Z)E
= AW)R(X,Y)Z + BIW[g(Y, D)X — g(X,D)Y ],

from which it follows that
(3.4) —g9((VWwR)(X,Y)Z,U) + n ((VwR)(X,Y)Z) n(U)
= AW)g(R(X,Y)Z,U) + BW)[g(Y,Z)g(X,U)
—9X,Z2)g(Y, U)].
Let {ei}, i=1, 2, ..., 2n+1 be an orthonormal basis of the tangent space at any point

of the manifold. Then putting X = U = {ei} in (3.4) and taking summation over i,
1<i<2n+1, we get

3.5) ~ (TS, 2) + X2 (% R) (e, Y)Z)n(e) = AW)S(Y, Z)
+ 2nB(W)g(Y, 2).
The second term of (3.5) by putting Z=¢ takes the form

g((VyR)(ei,Y) & € )g(ei, &), which is denoted by E. In this case E vanishes. Namely
we have

g((WR)(ei,Y) $,8) = g((WR(ei,Y) &, $)- g(R(Wyei, Y) §,$)
— g(R(e,%,Y)E, ) — g(R(el, Y)V$,$)

Using (2.3) (b) and (2.27) we obtain

g(R(ei,Y)§,$)=glkln (R,Y )ei—n(ei) 1y ¥ ],$)
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=k[n (V,Y n(en)-n(e) n(R, Y )] = 0.

Thus we obtain

g((MR)(ei,Y) §,8) = g(RR(el,Y) §,8) — g(R(el,Y) 1, §,6).

In view of g(R(ei,Y) ¢,8) = g(R(§,&)ei,Y) = 0, we have
g(VwR(ei,Y)E, §) + g(R(el,Y)$, R, &) = 0, since (,9) = 0,

which implies
g((VWR(ell Y) E 'E) = _g(R(ei' Y) f ’ VW f) - g(R(eL' Y) VW f 'E) =0

Using (2.5) and applying skew-symmetry of R we get
9((GR)(ei,Y)§,¢) = g(R(el,Y )E, W + @hW)
+g(R(el,Y)(oW + @hW),$)

= g(R(eW + @hW,$)Y,el) + g(R(E, oW + @hW)Y,ei).

Hence we obtain
E=Y g (R(phW, €)Y, ei)g(§ , ei)
+ g(R(&E, W + @hW)Y,ei)g(¢é,ei)] = 0.

Replacing Z by ¢ in (3.5) and using (2.21) we get
(3.6) - (GyS)Y, &) = 2nkAW)n (Y) + 2nB(W) n (Y).
Now we have
WX, $) = RBSE,§) = SWY, ) — ST, K.
Using (2.21) and (2.5) in the above relation, it follows that
(3.7) (VeSHY, &) = 2nk(V, n)(Y) + S(Y, oW + @hW).
In virtue of (3.7),(2.26) and (2.3) (a) we get
(3.8) (WWS)(Y, &) = —2nkg(eW + @hW,Y) + S(Y, W + @hW).

By (3.6) and (3.8) we have
(3.9 2nkg (W + @hW,Y ) — S(Y, oW + @hW) = 2nkA(W)n (Y)
+ 2nB(W)n (Y).

Replacing Y by ¢Y in (3.9) and using (2.1) (d), (2.2), (2.25) we get
2nkg(Y, W) + 2nkg(Y,hW) —S(Y,W) —S(Y,hW)
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+4(n — 1)g(Y,hW) + 4(n — 1)g(Y,h*W) = 0,
since, g(X,hY ) = g(hX,Y).
Now by (2.23), (2.18) and (2.1) (a) this implies
SY,W)+2(n —Dg(Y,hW) —-2(n — 1)(k —Dg(Y,W)
t2(n =Dk —Dn@)nW) = [2nk —4(n -1k —D]g¥, W)
+ [2nk + 4(n—D)]g(Y,hW) + 4(n—1)(k — 1) n (Y )n (W),
which gives,
(3.10) SY,W)=2(n + k—1Dg(Y,W)+ 2(nk +n-1)g(¥,hW)
+2(n —1)
(k= Dn)nW).

Replacing W by hW and using (2.23), (2.18) and (2.1) (a) we get from (3.10) that
—2kg(Y,hW) = —2nk(k —1)g(Y,W) + 2nk(k — 1) n (V) n(W).

Since we may assume that k # 0, and so
(3.11) gl¥,aW) = ntk —Dg¥,W) — nk —1)n Y )n W)

From (3.10) and (3.11) we get
(3.12) SY, W) = ag(Y, W) + bn(Y)n (W),

Where
a = 2[(n + k- 1)]+ n(k— 1)(nk + n- 1),
b=2[n-1Dk-1)—-ntk - 1Nk +n —1)]
are constants. So, the manifold is an 7 -Einstein manifold with constant coefficients.
Hence the theorem is proved.
Now, from (3.3) we have
(3.13) (WRYX,Y)Z = n((VR)(X,Y)Z))§ — AW)R(X,Y )Z
—BW)[g(Y,2)X — g(X,Z2)Y ].

From (3.13) and the second Bianchi identity we get
(3.14) AW)n (R(X,Y)Z) + BW)[g(Y,Z)n (X) — g(X,Z2)n(Y )] +
AX)n (RY,W)Z) + B(X)[gW,Z)n(Y) — g(Y,Z)n (W)] +
AY)n(RW,X)Z) + BY)[gX,Z)n (W) — gW,Z)n (X)] =
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Using (2.28) we get from (3.14) that
(3.15) k[AW)(@(Y,Z)n (X) —gX,Z)n(¥ )] + [BAW)(g(Y,Z) n (X)
—9(X,Z)n (Y ))]
+k[A) (gW,Z)n (V) — g(¥,Z)n W))]
+[BX)(GW,Z)n(Y) —g,Z)n (W))]
+k[A(Y ) (g (X, Z)n (W) — gW, Z)n (X))]
+[B(Y)(9g(X, Z)n (W) — gW,Z)n (X))] = 0.
Putting Y = Z = {ei} in (3.15) and taking summation over i, 1 <i<2n+ 1, we
get
(3.16) [kAW) + BW)]n(X) = [kAX) + B(X)]n(W),

Replacing X by € in (3.16), it follows that
(3.17) [KA(W) + BW)] = [kn(p1) + n(p)] n(W)

for any vector field W, where A(§) = g(&,p) = n(p),p being the vector field
associated to the 1-form A, that is, g(X,p) = A(X). Hence we state the following
theorem:

Theorem 3.2. In a Generalised ¢-recurrent N (k) —contact metric manifold (M, g),
n > 1, the characteristic vector field ¢ and the vector field p associated to the 1-
form A are co-directional and the 1-form A is given by (3.17).

3-dimensional Generalised ¢-recurrent N(k) —contact metric
Manifolds

In a 3-dimensional Riemannian manifold we have
@.1) R(X,Y)Z = g(Y,2)QX — g(X,Z)QY + S(Y,Z)X
—S(X2)Y +3 [gX,2)Y — g(¥,2)X],
where Q 1is the Ricci-operator, that is, g(QX,Y) = S(X,Y) andr is the scalar

curvature of the manifold. Now putting Z = ¢ in (4.1) and using (2.3) (b) and (2.21)
we get

(4.2) R(X,Y)E = 5 (V)QX — n (X)QY +2k[n (NX — n (X)Y]
+= )Y = 1 (NX]

Using (2.27) in (4.2), we have
43) (k =2 [n(NX = n (Y] = n(X)QY — n(V)eX.
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Putting Y = ¢ in (4.3) and using (2.21), we get
4.4) QX = G—i)X + (3k = 2 ) n()n (1)

Therefore, it follows from (4.4) that
(4.5) SY) = (2 - k)gv)+ (3k-5)n COm (v)
Thus from (4.1), (4.4) and (4.5), we get
(4.6) RX,Y)Z = (S=2k)[g(V,. D)X — g(X,2)Y ]
+Bk-DMg(, 2)n () § -
gX, 2 ¥ )§ +n ¥ @)X —nX)n(2)Y].
Taking the covariant differentiation to both sides of the equation (4.6) we get
(4.7) R X Y)Z =22 [g(v, )X — gX,2)Y — g(¥,Z) 1 (X) §
+9X.2)n ¥ )§ —n¥)n@X + nXn (2)Y ]
+ Bk —%) [9(Y.Z)n (X) — 9g(X,Z)n (Y )] W

+(3k-2) [ X = 1 OV 1)@
+(3k-3) 907, 2)§ = n@Y 1T )0

_(3k-3) 92§ = 0 DX 1)),

Noting that we may assume that all vector fields X,Y,Z and W are orthogonal to
¢ and using (2.1) (b), we get

4.38) @ A&, Y)Z =2 [g(v, )X — g(X,2)Y ]

+ (3k -g)[g(Y,Z)(VW &) — g&X, 2)(W,n)(¥)] <.

Applying @?to both sides of (4.8) and using (2.1) (a) and (2.1) (c), we get

(4.9) 0* (RRY(X,Y)Z =" [g(X, Z)Y — g(¥,2)X).

Using (3.1), the equation (4.9) reduces to
(4.10) AWYRX,Y)Z + BW)[g(Y,2)X — g(X,Z)Y ]
=T g(X,2)Y — g(¥,2)X].
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Putting W = {ei}, where {ei}, i =1, 2, 3, is an orthonormal basis of the tangent
space at any point of the manifold and taking summation over i, 1 <1< 3, we obtain

4.11) R(X,Y)Z = Alg(X,2)Y — g(Y, 2)X],
dr(ei) B w]

2A(ei) A(ei)
theorem A will be a constant on the manifold. Thus we obtain the following theorem:

where A = | is a scalar, since A is a non-zero 1-form. Then by Schur’s

Theorem 4.3. A 3-dimensional Generalised ¢ -recurrent N(k) —contact metric
manifold is of constant curvature.
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