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Abstract 
 

The paper is aimed at examining the steady flow of an incompressible couple 
stress fluid in the region bounded by two confocal oblate spheroids when they 
are slowly rotating about their common axis of symmetry with different 
angular speeds. 

Assuming the angular speeds to be small, we adopt the Stokesian approach 
and neglect the non linear terms in the equations of motion. The velocity is 
determined subject to the hyper stick boundary condition. The expression for 
velocity is obtained in terms of associated Legendre functions and oblate 
spheroidal radial and angular wave functions. However, for convenience, we 
write the expression of velocity in terms of prolate spheroidal radial and 
angular wave functions, in addition to the associated Legendre functions. The 
couple acting on the two spheroids is obtained. The variation of the couple is 
studied numerically for different values of the couple stress parameter, 
rotation parameter and geometric parameter. The results for the non polar case 
are also presented for completeness. The analysis of the problem is facilitated 
by the introduction of a certain notations.  

 
Keywords: Couple stress fluids; Confocal oblate spheroid; Stokesian 
approach; Angular and radial spheroidal wave functions; Velocity; Couple. 

 
 
Introduction 
The theory of couple stress fluids was initiated by V.K. Stokes [1, 2] almost parallel 
to the theory of micropolar fluids of A.C. Eringen [3]. The animal blood is one of the 
examples close to the two fluid models. These two prominent polar fluid models are 
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independent generalizations to the classical viscous fluid model which arise from 
different stand points. The couple stress fluid model of Stokes takes into consideration 
the mechanical interactions taking place across a surface in the fluid medium and is 
not concerned with the micro structure as is the case with micropolar fluid. This 
model is the simplest polar fluid model that shows all the important features and 
effects of couple stresses. The characterizing features that distinguish the couple stress 
fluid from the classical Newtonian fluid are the presence of couple stresses and body 
couples in the medium and the non symmetry of the stress tensor. The governing 
equations of the couple stress fluid flow are similar to the classical Navier Stokes 
Equations with an increase in the order of the equation by two. The structure of the 
equations facilitates a comparison with the results for the classical Newtonian fluid 
which is nonpolar.  
 A good number of fluid flow problems that are present in the realm of viscous 
fluid theory have also been investigated in the context of the couple stress fluid theory 
during the last four and half decades. Stokes himself has studied the effects of couple 
stresses in fluids on the creeping flow past a sphere [4]. He also studied the effects of 
couple stresses on hydromagnetic channel flows. A number of references to couple 
stress fluid flow problems dealt with up to 1983 can be seen in Stokes [2]. Lakshmana 
Rao and Iyengar made analytical and computational studies of the couple stress fluid 
flows with respect to certain axisymmetric bodies like circular cylinder, sphere and 
spheroid in [5]. Ramkissoon obtained a formula for the drag on a general 
axisymmetric body when there is a uniform flow of an incompressible couple stress 
fluid far away from the body parallel to the axis of symmetry [6] which is analogous 
to the elegant formula derived by Payne and Pell [7]. Subsequently he also obtained a 
formula in the form of a limit for the couple acting on a general axi symmetric body 
rotating slowly in an infinite expanse of an incompressible couple stress fluid [8] and 
this is analogous to the one derived by Kanwal for the case of a viscous fluid [9]. 
Iyengar and Srinivasacharya studied the Stokes flow of a couple stress fluid past an 
approximate sphere [10] and the couple experienced by an approximate sphere in an 
incompressible couple stress fluid [11].  
 There have been some studies of couple stress fluid flow problems in other 
contexts too. Dabe and Mohandis studied the effect of couple stresses on pulsatile 
hydro magnetic Poiseuille flow [12]. Naduvinamani et.al studied the squeeze film 
lubrication of short porous general bearing with couple stress fluids[13]. They also 
discussed the surface roughness effects in a short porous journal bearing [14] and the 
effects of surface roughness on the couple stress squeeze film between sphere and a 
flat plate [15]. Naduvinamani et. al studied the hydrodynamic lubrication of rough 
slider bearings with couple stress fluids [16]. Rathod and Tanveer studied Pulsatile 
flow of Couple stress fluid through a porous medium with periodic body acceleration 
and magnetic field [17]. Devakar and Iyengar studied Stokes problems and run uip 
flow between parallel plates for an incompressible couple stress fluid [18, 19]. 
Iyengar and Punnamchader discussed the pulsating flow of a couple stress fluid 
between permeable beds with an imposed magnetic field [20]. These diverse flow 
problems indicate the continuing interest among researchers in couple stress fluid 
flows.  
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 In this paper, we consider two confocal oblate spheroids the region between which 
is filled by an incompressible couple stress fluid. We discuss the steady flow of the 
fluid generated by the slow steady rotation of the two spheroids about their common 
axis of symmetry with two different angular speeds. This problem in the case of two 
concentric spheres can be handled easily. The problem under consideration requires 
the solution of a fourth order partial differential equation which has to satisfy the 
boundary conditions on the two spheroids. Thus the problem is mathematically 
difficult and challenging in view of the fourth order partial differential equation 
governing the flow and the spheroidal geometry. We obtain the velocity of the flow 
field and an expression for the couple experienced by the bounding spheroids. 
Numerical evaluation of the couple is made for different values of the couple stress, 
rotation and geometric parameters and its variation is studied. The case of viscous 
fluid is also included for completeness. As the situation demanded, we have 
introduced some notations conveniently to handle lengthy expressions. The problem 
under consideration is significant in view of the mathematical complications that it 
poses and its tractability using special functions like the angular and radial spheroidal 
wave functions. The authors feel that the notations that are introduced herein in can be 
useful for future workers.  
 
 
Basic Equations and Formulation of the Problem 
Let the region between two confocal oblate spheroids be filled by an incompressible 
couple stress fluid. Let their common axis of symmetry be taken as z-axis and the 
common center be taken as the origin. Let us introduce an oblate spheroidal 
coordinates (ξ, η, φ) through the usual cylindrical polar coordinate system (r, z, φ) 
such that 

 ( )η+ξ=+ ihSincirz  (1) 
 
and let 

 Sinh ξ  = T, Cos η  = t (2) 
 
 Let the inner and outer spheroids be defined by ξ  = ξ 0 and ξ  = ξ 1 respectively. 
Equivalently let these be represented by T = T0 and T = T1. Let these rotate with 
angular speeds 0Ω and 1Ω about the common axis. We assume that 0Ω and 1Ω  are so 
small that the equations of motion can be linearized by the neglect of nonlinear terms 
in the equation of motion under the Stokesian approach. The linearized version of the 
equations of motion is given by 

 div q  = 0  (3) 

 =
dt

qdρ - grad p - μ curl curl q  - 1η  curl curl curl curl q  = 0 (4) 
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 Since 0Ω  and 1Ω are assumed to be small we can assume that the velocity q  has 

only the toroidal component in the direction of the unit vector φe . The flow variables 

are all assumed to be independent of φ . Hence we can choose the velocity q as,  

 q  = V (ξ, η) φe  (5) 
 
 Using (5) in (4), we note that V (ξ, η) satisfies the equation  

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ λ
− 2

2
22

c
EE ( )Vh 3  = 0  (6) 

 
where 
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2
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μ
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(7)
 

 
 The above V can be treated as a function of T and t and the operator E2 is given by  
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 The velocity component V( T, t ) has to satisfy the hyperstick boundary condition 
on T=T0 and T=T1 and in view of this, the velocity must satisfy the following four 
conditions: 

 
V (T0, t) = 0Ω  c ( )( )22

0 t11T −+  (9) 

 V (T1, t) = 1Ω  c ( )( )22
1 t11T −+   (10) 
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 Stokes in [2] mentions two types of boundary conditions: (A) Absence of couple 
stresses on the boundary; (B) Vorticity at the boundary equals the rate of rotation of 
the boundary. These are in addition to the usual no-slip condition on the velocity at 
the boundary. The conditions (9) and (10) correspond to the no-slip condition and 
conditions (11) and (12) correspond to the condition (B) mentioned above. Thus the 
velocity V can be determined by solving the equation (6) subject to the boundary 
conditions (9), (10), (11) and (12). 
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Solution of the Problem  
The solution of (6) can be obtained in the form V = V1 + V2 by superposing the 
solutions of  
 E2 (h3 V1) = 0 (13) 
 
and  

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
− 2

2
2E

c

λ (h3 V2) = 0 (14) 

 

in view of the linearity of the differential operators E2 and ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
− 2

2
2E

c

λ  and their 

commutativity. Adopting the method of separation of variables, the solution of (13) 
which is regular on the axis is given by 

 V1(T, t) = [ ]∑
∞

=

+
1n

)1(
nn

)1(
nn )iT(QB)iT(PA )t(P )1(

n   (15) 

 
where )1(

nP , )1(
nQ  are associated Legendre functions. The solution of (14) can be 

obtained in terms of oblate spheroidal wave functions )T,i(R n1 λ  and ( )t,iS n1 λ . The 
oblate spheroidal angular wave functions can also be represented as prolate spheroidal 
angular wave functions by changing the parameter iλ  to λ . The radial oblate 
spheroidal wave functions can be represented as radial prolate spheroidal wave 
functions by changing the parameter iλ  to λ  and the variable T to iT [21]. Hence, the 
solution V2 of the equation (14) which is regular on the axis is given by 

 V2(T, t) = [ ]∑
∞

=

λ+λ
1n

)4(
n1n

)3(
n1n )iT,(RD)iT,(RC )t(S )1(

n1 λ  (16) 

 
where Cn and Dn are infinite sets of arbitrary constants and the functions )3(

1nR , )4(
1nR

and )1(
1nS  are prolate spheroidal wave functions given by  
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 Hence the velocity component V is given by 
 V (T, t) = V1 (T, t) + V2 (T, t) 

   = ∑ [ ])iT(QB)iT(PA )1(
nn

)1(
nn +  )t(P )1(

n   

  + ∑ [ ]),(),( )4(
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 The infinite sets of arbitrary constants An, Bn, Cn, Dn are to be determined making 
use of the boundary conditions (9), (10), (11) and (12). In view of symmetry, 

t)- V(T,   t)V(T, = , the constants { An, Bn, Cn, Dn, } can all be presumed to be zero for 
even values of n.  
 
 
Determination of Arbitrary Constants 
The arbitrary constants An, Bn, Cn, Dn can be determined, using the expression of 
velocity given in (20) in the boundary conditions (9), (10), (11) and (12). 
Implementation of the boundary conditions results in the following equations 
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 Multiplying equations (21) and (22) with )t(P )1(

n  and integrating both sides with 
respect to t from –1 to 1. We get 
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 Similarly, multiplying the equations (23) and (24) with )()1( tPn  and integrating 
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 Eliminating Am from equation (25) and equation (26), we get 

 Bm [ ])iT(Q)iT(P)iT(Q)iT(P 0
)1(

m1
)1(

m1
)1(

m0
)1(

m −   

 { [ ])iT,(R)iT(P)iT,(R)iT(PC 0
)3(

l11
)1(

m1
)3(

l10
)1(

m
l

l λ−λ+∑
 

 ]})iT,(R)iT(P 0
)4(

l11
)1(

m λ− )(d l1
1m λ− = [ )1T(C)iT(P 2

110
)1(

1 +Ω  

 ])1T(C)iT(P 2
001

)1(
1 +Ω−  1mδ  (30) 

 
 Eliminating Am from equations (27) and (28), we get 
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 Let us introduce 
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 With this notation, rewriting the equations (30) and (31) and then eliminating mB , 
we get the following infinite simultaneous nonhomogeneous system of linear 
equations in lC  and lD : 
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 As the system in (38) is infinite, the constants Cl and Dl can be determined by a 
numerical procedure after fixing a suitable stage of truncation. After the determination 
of Cl and Dl, Bm’s can be determined making use of either of (30) and (31) 
subsequently Am’s can be determined using any one of (27) and (28). Thus we have a 
systematic feasible procedure for the numerical determination of An, Bn, Cn, Dn. Here 
an explicit analytical determination of the constants is not possible. 
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Couple Acting on the Spheroids 
The couple acting on the two spheroids T=T0 and T=T1 can be evaluated by 
calculating the contributions due to the action of the force stress tensor and the couple 
stress tensor. The contribution of the force stress tensor is given by  
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where the integrand is to be evaluated on T = T0 or T = T1 as the case may be. This, 
on evaluation turns out to be 
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on T = T0 and T = T1. The contribution of the couple stress tensor to the couple on the 
boundary is given by 
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  ( )(∑ λ )it,(RC 3
n1n

( ) ))it,(RD 4
n1n λ+ ( )λnd 1

0  (45) 

 
 The total couple on the body is given by 
 C  = CI + CII 

  = 
3

8π 2cμ ( ) 2
12 1T + ( ) ( )(⎢
⎣

⎡
λ+− ∑ iT,DRC)1T( 3

n1n
2  

  ( ) ( ))iT,DRD 4
n1n λ+ ( )λnd 1

0  

   + ( ) ( ) ( ) ( )( )∑ λ+λ iT,DRDiT,DRCT 4
n1n

3
n1n ( ) ]λn1

0d   (46) 

 
 To calculate the couple C on the inner spheroid T = T0, using (25) and (27) we get 

 ∑ ( )( ) ( ) ( )( )0
4
n1n0

3
n1n iT,RDiT,RC λ+λ  ( )λn1

0d  = )1T(c 2
0 +Ω   

  [ ])iT(QB)iT(PA 0
)1(

110
)1(

11 +−   (47) 

 
and  

 ∑ ( )( ) ( ) ( )( )0
4
n1n0

3
n1n iT,DRDiT,DRC λ+λ  ( )λid n1

0  =
)1T(

cT
2
0

00

+

Ω   

  [ ])iT(DQB)iT(DPA 0
)1(

110
)1(

11 +−
 
 (48) 

 
using (47), (48) in (46) and simplifying, we observe that, on 0Τ=Τ , the couple is 
given by 

 C = 
3

16π
− 2cμ B1  (49) 

 
 Using (26) and (28) for T=T1 in (46), we see that the couple on T = T1 is also 
given by 

 C = 
3

16π
− 2cμ B1  (50) 

 
 Thus both the spheroids experience the same couple. 
 In the case of nonpolar fluid, this expression for couple is same as above, 
however, with B1 taken as the one corresponding to the nonpolar case. This formula is 
the same as that we get in the case of slow steady rotation of a single oblate spheroid 
in an infinite expanse of an incompressible couple stress fluid which is otherwise at 
rest as can be seen from [5]. 
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Case of non polar fluid 
In this case the equations of motion are  

 div q  = 0  (51) 

 - ∇ p - ( )q×∇×∇μ  = 0 (52) 
 
and these can be obtained as a special case from couple stress fluid flow equations by 
putting 1η  = 0. With q  = (0, 0, V( ηξ , )), we get 

 E2 ( h3 V ) = 0 (53) 
 
 In the present case of rotation of two confocal oblate spheroids, we get 

 V(T, t) = ( ) ( ) ( ) ( )[ ]∑
∞

=

+
1n

1
nn

1
nn TiQBTiPA  ( ) ( )tP 1

n  (54) 

 
 On the boundary T = T0 and T = T1, we require 

 V(T0, t) = 0Ω c ( )( )22
0 t11T −+  (55) 

 V(T1, t) = 1Ω c ( )( )22
1 t11T −+  (56) 

 
 With this we get An = Bn = 0 for n ≥  2 
and 

 A1 = c 
( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( )10
1

0
1

1
2

111
1

1
2
00

T,TDen
TiQ1TTiQ1T +Ω−+Ω

 (57) 

 B1 = 
( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( )10
1

0
1

1
2

111
1

1
2
00

T,TDen
TiP1TTiP1T

c
+Ω−+Ω

−  (58) 

 
 The couple on the on the boundary T = T0 or T = T1 is seen to be  

 1
2 Bc

3
16

μπ−  (59) 

 
which is same as that in (49) with 1η = 0. The variation of the couple on the boundary 
is calculated for varying values of Ω  = 01 ΩΩ  
 
 
Numerical Work 
To evaluate the couple on the spheroid numerically, we need to evaluate only the 
coefficient B1. For this we have to solve the system of equations (39). For a series of 
fluid flow parameter values, we have solved the system (39) numerically truncating it 
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to a 10 by 10 system. This truncation was motivated by the availability of the 
quantities ( )λid nm

r , ( )pid nm
r only to a limited extent in the published literature [21]. 

After numerically evaluating Cl, Dl for l = 1, 3, 5, 7, 9, we can numerically compute 
B1 from equation (30) or (31).  
 The couple on the spheroid(s) is calculated for diverse values of the couple stress 
parameter λ  geometric parameter T1 ( for a given T0 ) and the rotation parameter Ω . 
For a given T0 and T1, the figures (1) to (4) display the variation of the couple with 
respect to λ  for different values of the rotation parameter Ω . As λ  increases, for a 
Ω , the couple decreases. Further for the same λ , as Ω  increases, the couple 
increases. This trend is seen in all the calculated values. 
 We evaluate the couple parameter B1 for various values of the couple stress 
parameterλ , rotation parameter Ω  = 01 ΩΩ , and geometric parameter T1 for a fixed 
inner spheroid size T0. The results are shown through figures 1 to 4. In all the figures 
we have taken T0 = 1.1 and increased T1 which means that the size of the outer 
spheroid is increasing. In each figure we have shown the variation of the couple 
parameter for four values of Ω  and for increasing values ofλ . Further the couple has 
a tendency to decrease. Further as Ω  increases the couple increases. This trend is 
observed in all the cases. 
 In all the cases, we notice that as λ  increases, the couple decreases. An increase 
in λ  implies a decrease in the coefficient of couple stress viscosity. This in turn 
implies that the fluid is tending to be Newtonian. Thus the couple acting on each 
spheroid in the case of couple stress fluid is greater than the couple experienced in the 
case of a Newtonian fluid.  
 From the figures 1 to 4, it is observed that as the size of the outer spheroid 
increases, the couple is increasing. Further we notice that as the rotation parameter Ω  
increases, the couple is increasing. 

 

 
 

Figure 1: Variation of couple w.r.t lamda with varying omega 
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Figure 2: Variation of couple w.r.t lamda with varying omega 

 

 
Figure 3: Variation of couple w.r.t lamda with varying omega 

 

 
Figure 4: Variation of couple w.r.t lamda with varying omega 
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Conclusions 
In this paper we have considered two confocal oblate spheroids and assumed that the 
region between them is filled by a couple stress fluid. With the assumption that the 
spheroids are rotating steadily and slowly with different angular speeds, we obtained 
expressions for the toroidal velocity component under Stokesian approximation. We 
obtained an expression for the couple experienced by each of the boundaries. Further 
we presented the case of Newtonian fluid is for completeness. The analysis is mainly 
theoretical in nature and the complicated expressions involving spheroidal wave 
functions could be handled to lead to the determination of the velocity and couple 
through the introduction of certain notations which are likely to be useful for the 
workers in the field. Computational work to find the variation of couple is carried out 
and the variation is presented through graphs. It is found that as the rotation 
parameter/ the coefficient of couple stress viscosity/ size of the spheroid (when the 
inner spheroid is fixed) increases the couple experienced by the spheroids is seen to 
increase. 
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