# **Induced** $\Delta$ **-Decomposition of Graphs**

E. Giftin Vedha Merly<sup>1</sup>, N. Gnanadhas<sup>2</sup>, P. Thangavelu<sup>3</sup>

<sup>1</sup>Daprtment of Mathematics, Scott Christian College (Autonomous), Nagercoil-629 003, India E-mail: giftinmerly@gmail.com <sup>2</sup>Former Principal, Nesamony Memorial Christian College, Marthandam-629 165, India. <sup>3</sup>Department of Mathematics, Karunya University, Coimbatore-641 114, India.

### Abstract

A decomposition of a graph *G* is a collection of edge-disjoint subgraphs  $H_1, H_2, ..., H_r$  of *G* such that every edge of *G* belongs to exactly one  $H_i$ . A decomposition  $\psi = \{H_1, H_2, ..., H_r\}$  is called a  $\Delta$ -decomposition if the maximum degree of  $H_i$  is *i* for each *i*. A  $\Delta$ -decomposition  $\psi = \{H_1, H_2, ..., H_r\}$  of a graph *G* is called an *induced*  $\Delta$ -decomposition if each of the subgraph  $H_i$  is an induced subgraph of *G*. The minimum cardinality of the induced  $\Delta$ -decomposition of a graph *G* is called the *induced*  $\Delta$ -decomposition concept was initiated in [1]. In this paper, we continue this study by defining induced  $\Delta$ -decomposition and the corresponding parameter  $\pi_{i\Delta}$ . We determine the value of  $\pi_{i\Delta}$  for perfect facto graph and some standard graphs.

Keywords: Induced  $\Delta$ -decomposition, induced  $\Delta$ -decomposition number.

# Introduction

By a graph G = (V, E) we mean a finite, connected, undirected graph without loops or multiple edges. In a graph G, p and q denote respectively the order and size of G. Also  $\Delta(G)$  denotes the maximum degree of G and is given by  $\Delta(G) = max\{d(v)/v \in V\}$ . For terms not defined here we refer to Harary [5].

A decomposition of a graph G is a collection of edge-disjoint subgraphs  $H_1, H_2, ..., H_r$  of G such that every edge of G belongs to exactly one  $H_i$ . A decomposition  $\psi = \{H_1, H_2, ..., H_r\}$  is called a  $\Delta$ -decomposition if  $\Delta(H_i) = i$  for each *i*. The minimum cardinality of the  $\Delta$ -decomposition of a graph G is called the  $\Delta$ -

decomposition number of G and is denoted by  $\pi_{i\Delta}(G)$ . Various types of decompositions have been studied by various authors. Induced Path decomposition number, Induced Acyclic Path decomposition number are some such decomposition parameters.

- 1. For any positive integer z, we define the z-facto graph as a graph G(z) = (V, E) where  $V = \{v_i \mid v_i \text{ is a factor of } z\}$  and two vertices  $v_i$  and  $v_j$  are adjacent if and only if  $v_i v_j \in V$ . A graph G is said to be a facto graph if there exists a positive integer z such that G is isomorphic to an z-facto graph G(z), for some z. If  $G \cong G(z)$ , for some z then the integral order of the graph G is equal to z and is denoted by  $o_i(G)$ . We refer a facto graph G(z) by G with  $o_i(G) = z$ .
- 2. A facto graph G which is of integral order  $p^{\alpha}$ , where p is a prime and  $\alpha$  is a positive integer is called a *Perfect Facto graph*. If  $\alpha$  is odd (even) then G is called an *odd* (even) perfect facto graph.

**Example 3.5:** Odd perfect facto graphs G of integral order  $p^9$  is depicted in Figure 1.



Figure 1

# Induced $\Delta$ -decomposition of a graph

In this section we introduce the notion of induced  $\Delta$ -decomposition and induced  $\Delta$ -decomposition number and determine the value of this parameter for even perfect facto graph and its complement.

**Definition 1.1:** [3] A decomposition  $\psi = \{H_1, H_2, \dots, H_r\}$  of a graph *G* is called a  $\Delta$ -decomposition if  $\Delta(H_i) = i$ , for  $i = 1, 2, \dots, r$ . The minimum cardinality of a  $\Delta$ -

decomposition of G is called the  $\Delta$  - decomposition number of G and is denoted by  $\pi_{\Delta}(G)$ .

**Definition 1.2:** A  $\Delta$  - decomposition  $\psi = \{H_1, H_2, \dots, H_r\}$  of a graph *G* is called an induced  $\Delta$  - decomposition of *G* if each  $H_i$  is an induced subgraph of *G*. The minimum cardinality of the induced  $\Delta$  - decomposition of *G* is called the induced  $\Delta$  - decomposition of *G* is called the induced  $\Delta$  - decomposition  $\psi$  of *G* with  $|\psi| = \pi_{i\Delta}(G)$  is called the minimum induced  $\Delta$  - decomposition of *G*.

**Example 1.3:** Consider the graph *G* given in Figure 1.





Let  $\psi = \{H_1, H_2, H_3, H_4\}$ . The subgraph  $H_1$  of G is induced by  $\{v_3, v_4\}$ ,  $H_2$  is induced by  $\{v_4, v_5, v_8\}$ ,  $H_3$  is induced by  $\{v_3, v_6, v_7, v_8, v_9, v_{10}, v_{11}\}$ . Also  $\Delta(H_i) = i$ , for i = 1, 2, 3, 4. Hence  $\psi$  is an induced  $\Delta$  - decomposition of G.

Now consider another decomposition of *G* which is depicted in Figure 2.



Figure 2

Here  $G_1$  is induced by  $\{v_7, v_8\}$ ,  $G_2$  is induced by  $\{v_6, v_9, v_{10}, v_{11}, v_8, v_4, v_5\}$  and  $G_3$  is induced by  $\{v_1, v_2, v_3, v_4, v_6, v_7, v_{10}\}$ . Let  $\psi_1 = \{G_1, G_2, G_3\}$ . Then  $\psi_1$  is an induced  $\Delta$  - decomposition of G. Also,  $\pi_{i\Delta}(G) = |\psi_1| = 3$ .

#### Induced $\Delta$ -decomposition of perfect facto graph

**Theorem 1.4:** Every odd perfect facto graph G with  $o_i = p^{\alpha}$ , has an induced  $\Delta$  -decomposition and  $\pi_{i\Delta}(G) = \left[\frac{\alpha}{2}\right]$ .

**Proof:** Let G = (V, E) be an odd perfect facto graph and  $o_i(G) = p^{\alpha}, \alpha \in Z^+$  and  $\alpha$  is odd. Let  $V = \{p^0, p^1, p^2, \dots, p^{\alpha}\}$  and we have the edge set

 $E = \left\{ p^0 p^i / 1 \le i \le \alpha \right\} \cup \left\{ p^1 p^i / 2 \le i \le \alpha - 1 \right\} \cup \dots \cup \left\{ p^{\left\lfloor \frac{\alpha}{2} \right\rfloor} p^{\left\lfloor \frac{\alpha}{2} \right\rfloor} \right\}.$ 

We have the maximum clique of *G* is the complete subgraph  $K_{\left[\frac{\alpha}{2}\right]+1}$  of *G* and the clique number is  $\left[\frac{\alpha}{2}\right] + 1$ . Also  $K_{\left[\frac{\alpha}{2}\right]+1}$  is induced by the set  $\{p^0, p^1, p^2, \dots, p^{\left[\frac{\alpha}{2}\right]}\}$  and it follows that  $\Delta\left(K_{\left[\frac{\alpha}{2}\right]+1}\right) = \left[\frac{\alpha}{2}\right]$ . Now for  $i = 0, 1, 2, \dots, \left[\frac{\alpha}{2}\right] - 1$ , let  $E\left(K_{1,\left[\frac{\alpha}{2}\right]-i}\right) = \left\{p^i p^j / \left[\frac{\alpha}{2}\right] + 1 \le j \le \alpha - i\right\}$ . When i = 0, we have  $E\left(K_{1,\left[\frac{\alpha}{2}\right]}\right) = \left\{p^0 p^{\left[\frac{\alpha}{2}\right]+1}, p^0 p^{\left[\frac{\alpha}{2}\right]+2}, \dots, p^0 p^{\alpha}\right\}$  and hence  $\Delta\left(K_{1,\left[\frac{\alpha}{2}\right]}\right) = \left[\frac{\alpha}{2}\right]$ .

When i = 1, we have  $E\left(K_{1,\left\lfloor\frac{\alpha}{2}\right\rfloor-1}\right) = \left\{p^1 p^{\left\lceil\frac{\alpha}{2}\right\rceil+1}, p^1 p^{\left\lceil\frac{\alpha}{2}\right\rceil+2}, \dots, p^1 p^{\alpha-1}\right\}$  and  $\Delta\left(K_{1,\left\lfloor\frac{\alpha}{2}\right\rfloor-1}\right) = \left\lfloor\frac{\alpha}{2}\right\rfloor - 1.$ 

On incrementing the value of *i* by 1 repeatedly we get stars  $K_{1,\lfloor\frac{\alpha}{2}\rfloor-2^{i}}K_{1,\lfloor\frac{\alpha}{2}\rfloor-3^{i}} \dots \text{ and } \text{ after } \lfloor\frac{\alpha}{2}\rfloor - 1 \text{ steps we have } i = \lfloor\frac{\alpha}{2}\rfloor - 1 \text{ and } E(K_{1,1}) = \{p^{\lfloor\frac{\alpha}{2}\rfloor-1}p^{j}/\lfloor\frac{\alpha}{2}\rfloor + 1 \le j \le \lfloor\frac{\alpha}{2}\rfloor + 1\} = \{p^{\lfloor\frac{\alpha}{2}\rfloor-1}p^{\lfloor\frac{\alpha}{2}\rfloor+1}\} \text{ and } \Delta(K_{1,1}) = 1.$ Now let  $\psi = \{K_{\lfloor\frac{\alpha}{2}\rfloor+1}\} \cup \{\bigcup_{i=0}^{\lfloor\frac{\alpha}{2}\rfloor-1}(K_{1,\lfloor\frac{\alpha}{2}\rfloor-i})\}.$ 

The decomposition  $\psi$  is an induced  $\Delta$  - decomposition of G, since each subgraphs are induced subgraphs of G and also  $\Delta \left( K_{\lfloor \frac{\alpha}{2} \rfloor + 1} \right) = \begin{bmatrix} \frac{\alpha}{2} \end{bmatrix}$  and for  $i = 0, 1, ..., \left\lfloor \frac{\alpha}{2} \right\rfloor - 1$ ,  $\Delta \left( K_{1, \lfloor \frac{\alpha}{2} \rfloor - i} \right) = \lfloor \frac{\alpha}{2} \rfloor - i$ . Hence  $\pi_{i\Delta}(G) \leq |\psi| = 1 + \lfloor \frac{\alpha}{2} \rfloor = \lfloor \frac{\alpha}{2} \rfloor$ . Also since  $K_{IGI}$  is an induced subgraph of G which is a maximum clique of G.

Also since  $K_{\left\lfloor\frac{\alpha}{2}\right\rfloor+1}$  is an induced subgraph of *G* which is a maximum clique of *G* we have  $\pi_{i\Delta}(G) \ge \left\lfloor\frac{\alpha}{2}\right\rfloor$ . Hence  $\pi_{i\Delta}(G) = \left\lfloor\frac{\alpha}{2}\right\rfloor$ .

**Example 1.5:** Consider the odd perfect facto graph G of integral order  $p^{11}$ , which is depicted in the following Figure.



Here  $\left[\frac{\alpha}{2}\right] = \left[\frac{11}{2}\right] = 6$  and  $\left[\frac{\alpha}{2}\right] = 5$ . The maximum clique of *G* and the other induced subgraph are constructed as below:

The maximum clique  $K_7$  is induced by the set  $\{p^0, p^1, p^2, \dots, p^6\}$  and  $K_{1,5}$  is induced by the set  $\{p^0, p^7, p^8, p^9, p^{10}\}$   $K_{1,4}$  is induced by the set  $\{p^1, p^7, p^8, p^9, p^{10}\}$ . The subgraph  $K_{1,3}$  is induced by the set  $\{p^2, p^7, p^8, p^9\}$ ,  $K_{1,2}$  is induced by  $\{p^3, p^7, p^8\}$  and  $K_{1,1}$  is induced by the set of vertices  $\{p^4, p^7\}$ .

The induced  $\Delta$  - decomposition of *G* is depicted in Figure 3.



 $p^0$   $p^{11}$   $p^{10}$   $p^9$   $p^8$  $p^7$ 

 $K_7$ 













# Figure 3

From the figure, we observe that the decomposition  $\psi = \{K_{7,K_{1,5},K_{1,4},K_{1,3},K_{1,2},K_{1,1}\}$  is an induced  $\Delta$  - decomposition of G and also  $\pi_{i\Delta}(G) = 6.$ 

**Theorem 1.6:** If G is an even perfect facto graph with  $o_i(G) = p^{\alpha}$ , then  $\pi_{i\Delta}(\overline{G}) = \frac{\alpha}{2}$ .

**Proof:** G is an even perfect facto graph with  $o_i(G) = p^{\alpha}$ ,  $\alpha$  is even.

By Theorem 2.19, the complement  $\overline{G}$  of G is isomorphic to  $G' \cup K_1$ , where  $o_i(\bar{G}) = p^{\alpha - 1}.$ 

G' is an odd perfect facto graph and hence by Theorem 2.1,  $\pi_{i\Delta}(G') = \left[\frac{\alpha-1}{2}\right]$ .

Since  $\alpha - 1$  is odd,  $\left[\frac{\alpha - 1}{2}\right] = \frac{\alpha - 1 + 1}{2} = \frac{\alpha}{2}$ . Thus  $\pi_{i\Delta}(\bar{G}) = \frac{\alpha}{2}$ . Now  $\bar{G} \cong G' \cup K_1$  implies that  $\pi_{i\Delta}(\bar{G}) = \pi_{i\Delta}(G' \cup K_1)$ . Also, since  $K_1$  has no edges, we have  $\pi_{i\Delta}(\bar{G}) = \pi_{i\Delta}(G') = \frac{\alpha}{2}$ .

**Remark 1.7:** The even perfect facto graph has no induced  $\Delta$  - decomposition.

#### Induced $\Delta$ - decomposition and of Graphs

In this section we determine the induced  $\Delta$ -decomposition number for the path and for the particular cases of star for which the induced  $\Delta$ -decomposition exist.

**Theorem 2.1:** 
$$\pi_{i\Delta}(K_{1,n}) = \begin{cases} 2 \text{ if } n = 3 \\ m \text{ iff } n = \binom{m}{2} \text{ and } m > 2 \end{cases}$$

**Proof:** Let  $V = \{u, v_1, v_2, ..., v_n\}$  be the vertex set of the star  $K_{1,n}$  with centre u. When n = 3, then the star  $K_{1,3}$  can have induced  $\Delta$ -decomposition,  $\psi = \{K_{1,1}, K_{1,2}\}$ where  $K_{1,1}$  is induced by the set  $\{u, v_1\}$  and  $K_{1,2}$  is induced by  $\{u, v_2, v_3\}$  clearly  $\psi$  is the minimum induced  $\Delta$ -decomposition of  $K_{1,3}$  and hence  $\pi_{i\Delta}(K_{1,3}) = 2$ .

Now, suppose that the star  $K_{1,n}$  has an induced  $\Delta$  - decomposition and let m > 2and  $\psi = \{H_1, H_2, \dots, H_m\}$  be an induced  $\Delta$ -decomposition of  $K_{1,n}$ . Then  $\Delta(H_i) = i$ , for  $i = 1, 2, \dots, m$ . Since any induced subgraph of  $K_{1,n}$  having maximum degrees  $1, 2, 3, \dots, m, H_i$  must be isomorphic to  $K_{1,i}$ . Also if  $q_i$  is the size of  $H_i$ , then  $q_i$  must be equal to *i*.

Then the size q of  $K_{1,n}$  which is equal to n is given by q = n = 1 + 2 + 3 + ... +  $m = \binom{m}{2}$ 

Conversely suppose that  $n = \binom{m}{2}, m > 2$ .

The star  $K_{1,n}$  is now  $K_{1,\binom{m}{2}}$ , and it has  $\binom{m}{2} = 1 + 2 + 3 + \dots + m$  edges. The star  $K_{1,\binom{m}{2}}$  can be decomposed into induced subgraphs  $K_{1,1}, K_{1,2}, K_{1,3}, \dots, K_{1,m}$ , induced by the set  $\{u, v_1\}, \{u, v_2, v_3\}, \{u, v_4, v_5, v_6\}, \dots, \{u, u_{\binom{m-1}{2}+1}, u, u_{\binom{m-2}{2}+2}, \dots, u_{\binom{m}{2}}\}$  respectively and  $\Delta(K_{1,i}) = i, i = 1, 2, \dots, m$ . Hence the decomposition,  $\psi = \{K_{1,1}, K_{1,2}, \dots, K_{1,m}\}$  is an induced  $\Delta$  - decomposition and this is the only possible number of  $\Delta$  - decomposition, so that  $\pi_{i\Delta}(K_{1,n}) = m$ .

**Result:** 2.2 For any path  $P_n$  with n > 3,  $\pi_{i\Delta}(P_n) = 2$ .

**Proof:** Let  $V = \{v_1, v_2, \dots, v_n\}$  be the vertex set of  $P_n$  and let the path be denoted by  $v_1, v_2, \dots, v_n$ . Consider the complete graph  $K_2$  induced by  $\{v_1, v_2\}$  and let  $P_{n-1}$  be the path given by  $v_2, v_3, v_4, \dots, v_n$  and is induced by  $\{v_2, v_3, \dots, v_n\}$ .

Now,  $\Delta(K_2) = 1$  and since  $n > 3, \Delta(P_{n-1}) = 2$ .

Thus the decomposition  $\psi = \{K_2, P_{n-1}\}$  is an induced  $\Delta$  - decomposition of  $P_n$ . Also,  $P_n$  cannot have other induced  $\Delta$  - decompositionlity different from 2 and hence  $\pi_{i\Delta}(P_n) = 2$ .

**Result 2.3:** A cycle  $C_n$  has no induced  $\Delta$  - decomposition.

If  $C_n$ , n > 3 be given by  $v_1, v_2, ..., v_n, v_1$  and if  $K_2$  is induced by  $\{v_1, v_2\}$ , then all the remaining edges cannot be covered by a path. More precisely, the edges incident with  $v_1$  and  $v_2$  cannot be covered by an induced path, and hence  $C_n$  has no induced  $\Delta$  -decomposition.

**Remark 2.4:** The complete graph has no induced  $\Delta$  - decomposition.

376

# References

- [1] E. Giftin Vedha Merly and N. Gnanadhas, On Facto Graph, *International Journal of Mathematics Research*, Volume 4, Number 2(2012), pp.125-131.
- [2] E. Giftin Vedha Merly and N.Gnanadhas, *Some More Results on Facto Graphs*, International Journal of Mathematical Analysis [*Communicated*].
- [3] E. Giftin Vedha Merly, N. Gnanadhas and P. Thangavelu, Δ-decomposition of perfect facto graph and other graphs, Asian Journal of Current Practical Engineering and Maths [Communicated].
- [4] David M. Burton, *Elementary Number Theory* University of New Hampshire.
- [5] Frank Harary, *Graph Theory*, Addition-Wesley Publishing Company-1872.
- [6] Juraj Bosak, Decompositions of Graphs Kluwer Academy Publishers, London.
- [7] Abraham V. M. and I. Sahul Hamid, Induced Acyclic Path decomposition in Graphs, International Journal of Mathematical and Computer Sciences 6.3.2010.