Characterization Of Various G-Inverses Of Intuitionistic Fuzzy Matrices

Dr. T. Gandhimathi

Department of Science and Humanities, P.A.College of Engineering and Technology—642 002, India. E.mail: <u>gandhimahes@rediffmail.com</u>

Abstract:

In this paper, we represent an intuitionistic fuzzy matrix as the Cartesian product representation of its membership and non-membership matrices. By using this representation, we shall discuss the characterization of set of all ginverses of an IFM and characterized the set of various g-inverses associated with the IFM.

Keywords: Fuzzy matrix, Intuitionistic fuzzy matrix, g-inverse.

1. Introduction:

We deal with fuzzy matrices that is, matrices over the fuzzy algebra F^M and F^N with support [0,1] and fuzzy operations $\{+, .\}$ defined as $a+b=\max\{a,b\}$, $a.b=\min\{a,b\}$ for all $a,b\in F^M$ and $a+b=\min\{a,b\}$, $a.b=\max\{a,b\}$ for all $a,b\in F^N$. Let F^M_{mxn} be the set of all mxn Fuzzy matrices over F. A matrix $A\in F^M_{mxn}$ is said to be regular if there exists $X\in F^M_{nxn}$ such that AXA=A, X is called a generalized inverse (g-inverse) of A. In [3], K im and K Roush have developed the theory of fuzzy matrices, under max min composition analogous to that of Boolean matrices. Cho [2] has discussed the consistency of fuzzy matrix equations, if A is regular with a g-inverse A, then A is a solution of A and A in A in

In this paper, we discussed the characterization of set of all various g-inverses of an IFM.

2. Preliminaries

Let $(IF)_{mxn}$ be the set of all intuitionistic fuzzy matrices of order mxn. Let $(IF)_{mxn}$ be the set of all intuitionistic fuzzy matrices of order mxn. First we shall represent A $\in (IF)_{mxn}$ as Cartesian product of fuzzy matrices. The Cartesian product of any two matrices $A = \left(a_{ij}\right)_{mxn}$ and $B = \left(b_{ij}\right)_{mxn}$, denoted as $\langle A,B \rangle$ is defined as the matrix whose ijth entry is the ordered pair $\langle A,B \rangle = \left(\left\langle a_{ij},b_{ij}\right\rangle\right)$. For $A = \left(a_{ij}\right)_{mxn} = \left(\left\langle a_{ij\mu},a_{ij\nu}\right\rangle\right)$ $\in (IF)_{mxn}$. We define $A_{\mu} = \left(a_{ij\mu}\right) \in F_{mxn}^{M}$ as the membership part of A and $A_{\nu} = \left(a_{ij\nu}\right) \in F_{mxn}^{N}$ as the non membership part of A. Thus A is the Cartesian product of A_{μ} and A_{ν} written as $A = \left\langle A_{\mu},A_{\nu}\right\rangle$ with $A_{\mu} \in F_{mxn}^{M}$, $A_{\nu} \in F_{mxn}^{N}$.

Here we shall follow the matrix operations on intuitionistic fuzzy matrices as defined in our earlier work [5].

For
$$A, B \in (IF)_{mxn}$$
, if $A = \langle A_{\mu}, A_{\nu} \rangle$ and $B = \langle B_{\mu}, B_{\nu} \rangle$, then (2.1)
$$A + B = \langle A_{\mu} + B_{\mu}, A_{\nu} + B_{\nu} \rangle$$

For
$$A \in (IF)_{mxp}$$
, $B \in (IF)_{pxn}$ if $A = \langle A_{\mu}, A_{\nu} \rangle$ and $B = \langle B_{\mu}, B_{\nu} \rangle$, then (2.2)
$$AB = \langle A_{\mu}.B_{\mu}, A_{\nu}.B_{\nu} \rangle$$
$$A_{\mu}.B_{\mu} \text{ is the max min product in } F_{mxn}^{M},$$
$$A_{\nu}.B_{\nu} \text{ is the min max product in } F_{mxn}^{N}.$$

For $A \in (IF)_{mxn}$, R(A) (C(A)) be the space generated by the rows (columns) of A. Let us define the order relation on (IF)_{mxn} as ,

(2.3)
$$A \le B \iff A_{\mu} \le B_{\mu} \text{ and } A_{\nu} \ge B_{\nu} \iff A + B = B$$
.

Definition 2.1[5]:

An $A \in (IF)_{mxn}$ is said to be regular if there exists $X \in (IF)_{nxm}$ satisfying AXA = A and X is called a generalized inverse (g-inverse) of A. which is denoted by A⁻. Let A{1} be the set of all g-inverses of A.

Definition 2.2:

For an IFM A of order m x n, an IFM X of order n x m is said to be $\{1, 2\}$ -inverse or semi inverse of A, if AXA = A and XAX = X

X is said to be $\{1,3\}$ -inverse or a least square g-inverse of A ,if AXA = A and $(AX)^T = AX$.

X is said to be $\{1,4\}$ -inverse or a minimum norm g-inverse of A ,if AXA = A and $(XA)^T = XA$.

X is said to be a Moore-Penrose inverse of A, if AXA = A, XAX = X, $(AX)^{T} = AX$ and $(XA)^{T} = XA$. The Moore-Penrose inverse of A is denoted by A^{+} .

Lemma 2.3[5]:

Let $A \in (IF)_{mxn}$ be of the form $A = \langle A_{\mu}, A_{\nu} \rangle$. Then A is regular $\Leftrightarrow A_{\mu}$ is regular in F $\frac{M}{mxn}$ under max min composition and A_{ν} is regular in F $\frac{N}{mxn}$ under min max composition.

Lemma 2.4[5]:

If
$$A \in (IF)_{mxn}$$
 is of the form $A = \langle A_{\mu}, A_{\nu} \rangle$, then (i) $R(A) = \langle R(A_{\mu}), R(A_{\nu}) \rangle$ and (ii) $C(A) = \langle C(A_{\mu}), C(A_{\nu}) \rangle$.

3. Characterization of various g-inverse:

In this section, we derive the characterization of the set of $A\{1\}$ in terms of a particular element of the set.

Let $A,B \in (IF)_{mxn}$. If $A \ge B$ then by (2.3) $A_{\mu} \ge B_{\mu}$ and $A_{\nu} \le B_{\nu}$. Let A_{μ} - $B_{\mu} = H_{\mu}$ and $A_{\nu}+B_{\nu}=H_{\nu}$ are an IFMs, but $A_{\mu} \ne B_{\mu} + H_{\mu}$ and $A_{\nu} \ne H_{\nu}$ - B_{ν} . Therefore $A \ge B$ then A-B = H is an IFM, but $A \ne B+H$.

Lemma 3.1:

For $A \in (IF)_{mxn}$ if G^* and G are g-inverse of A such that $G^* \geq G$, then G+H is a g-inverse of A for some $H \in (IF)_{nxm}$ such that $G^* \geq G + H \geq G$.

Proof:

Let
$$G^*$$
 - G = H . Then $G^* \ge H$. Since $G^* \ge G$ and $G^* \ge H$, it follows that $G^* \ge G + H \ge G$. Then AG^* $A \ge A(G+H)$ $A \ge AGA$ $\Rightarrow A \ge A(G+H)A \ge A$ $\Rightarrow A (G+H) A = A$ Thus $(G+H)$ is a g -inverse of A .

Theorem 3.2:

Let
$$A \in (IF)_{mxn}$$
 and G be a particular g-inverse of A . Then $A_G\{1\} = \{G+H/\text{ for all } H \in (IF)_{nxm} \text{ such that } A \geq AHA\}$ is the set of all g-inverse of A dominating G .

Proof:

Let B denote the set on the R.H.S of (3.1). Suppose
$$G^* \in A_G\{1\}$$
, then $G^* \geq G$.
 Let G^* - G = H. By Lemma (3.1), $G^* \geq G + H \geq G$ and $G + H$ is a g-inverse of A dominating G. Further $A(G+H)$ $A = A$ $\Rightarrow AGA + AHA = H$ $\Rightarrow A+AHA = A$

$$\Rightarrow$$
 A \geq AHA.

Hence $G + H \in B$. Thus for each $G^* \in A_G\{1\}$ there exist a unique element in B. Conversely, for any $G^* \in B$, $G^* = G + H \ge G$, with $A \ge AHA$

Now, AG*A = A(G+H)A = AGA + AHA = A + AHA = A.Thus $G* \in A_G\{1\}.$ Hence the proof.

Corollary 3.3:

Let $A \in (IF)_n$ be an idempotent IFM.Then $\{G+H/\text{for all } H \in (IF)_n \text{ such that } A \ge AHA\}...(3.2)$ is the set of all g-inverses of A dominating A.

Proof:

This follows from Theorem (3.2) by taking G = A. Since A is an idempotent IFM, A itself is a g-inverse.

Next we discuss the characterization of the sets $A\{1,3\}$ and $A\{1,4\}$ in terms of a particular element of the set.

Theorem 3.4:

The set $A\{1,3\}$ consists of all solutions for X of AX =AG. Where G is a $\{1,3\}$ inverse of A.

Proof:

Since
$$G \in A\{1,3\}$$
, by Definition (2.2), $AGA = A$ and $(AG)^T = AG$. For $X \in A\{1,3\}$ we have $AXA = A$ and $(AX)^T = AX$. Then
$$AG = (AXA)G = (AX)^T (AG)^T = (X^TA^T) (G^TA^T)$$

$$= X^T (A^TG^TA^T) = X^TA^T$$

$$= (AX)^T (AG)^T = (AX)^T (AG$$

Hence X is a solution of AX = AG.

Conversely, let AG = AX with $G \in A\{1,3\}$. Then A = AGA

$$\Rightarrow A = AXA$$

$$\Rightarrow X \in A\{1\}$$
(3.3)

Since
$$AG = AX \implies (AG)^{T} = (AX)^{T}$$

 $\Rightarrow AG = (AX)^{T}$
 $\Rightarrow AX = (AX)^{T}$
 $\Rightarrow X \in A\{3\}$ (3.4)

From (3.3) and (3.4) ,it follows that $X \in A \{1,3\}$. Hence the proof.

Theorem 3.5:

For $A \in (IF)_{mxn}$ and $G \in A\{1,3\}, A_G\{1,3\} = \{G+H/ \text{ for all } H \in (IF)_{mxn} \text{ such that } AG \ge AH\} ...(3.5)$ is the set of all $\{1,3\}$ inverses of A dominating G.

Proof:

Let B denote the set on the R.H.S of (3.5). Suppose $G^* \in A_G\{1,3\}$, then $G^* \geq G$. Let $G^* - G = H$. Since $A_G\{1,3\} \subseteq A_G\{1\}$, by theorem (3.2), $G^* \geq G + H \geq G$.

$$\Rightarrow$$
 AG* = A(G+H) \geq AG

By Theorem (3.4), $G^* \in A_G\{1,3\}$ and $G \in A_G\{1,3\}$

$$\Rightarrow$$
 AG* = AG

$$\Rightarrow$$
 A (G+H) = AG

$$\Rightarrow$$
 AG \geq AH.

Hence G+H \in B. Thus for each G* \in A_G{1,3}, there exists an unique element in B.

Conversely for any $G^* \in B$, $G^* = G + H \ge G$ with $AG \ge AH$. Hence $AG^* = AG + AH$ = AG. By Theorem (3.4), it follows that $G^* \in A_G\{1,3\}$. Hence the theorem.

Corollary 3.6:

For $A \in (IF)_n$ be a symmetric idempotent fuzzy matrix then $\{A+H/\text{ for all }H \in (IF)_n \text{ such that }AG/AH\}$ is the set of all $\{1,3\}$ inverses of A dominating A.

Proof:

This follows from Theorem (3.5) by taking G = A. Since A is symmetric and idempotent IFM, A itself is a $\{1,3\}$ inverse.

Remark 3.7:

The condition that G is a $\{1,3\}$ inverse of A is essential. This is illustrated in the following example.

Example 3.8:

For
$$A = \left\langle \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \right\rangle$$
, $\left\langle \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \right\rangle \in A\{1,3\}$

$$\Rightarrow A\{1,3\} \neq \Phi$$
Consider $G = \left\langle \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ .7 & 0 \end{pmatrix} \right\rangle \notin A\{1,3\}$

$$AG = \left\langle \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \right\rangle \left\langle \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ .7 & 0 \end{pmatrix} \right\rangle$$

$$= \left\langle \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ .7 & 0 \end{pmatrix} \right\rangle$$
For H

$$= \left\langle \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ .7 & 0 \end{pmatrix} \right\rangle \left\langle \begin{pmatrix} 1 & 0 \\ 0 & .2 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ .3 & 0 \end{pmatrix} \right\rangle$$

$$AH = \left\langle \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \right\rangle \left\langle \begin{pmatrix} 1 & 0 \\ 0 & .2 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ .3 & 0 \end{pmatrix} \right\rangle$$

$$= \left\langle \begin{pmatrix} 1 & 0 \\ 0 & .2 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ .3 & 0 \end{pmatrix} \right\rangle$$

$$\Rightarrow AG \ge AH$$
but G+H
$$= \left\langle \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ .7 & 0 \end{pmatrix} \right\rangle + \left\langle \begin{pmatrix} 1 & 0 \\ 0 & .2 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ .3 & 0 \end{pmatrix} \right\rangle$$

$$= \left\langle \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ .3 & 0 \end{pmatrix} \right\rangle$$

$$\Rightarrow G+H \not\in A\{3\}$$

$$\Rightarrow G+H \not\in A_G\{1,3\}$$
Since $G \in A\{1,3\} \Leftrightarrow G^T \in A^T\{1,4\}$

Theorem 3.9:

The set $A\{1,4\}$ consists of all solutions for X of XA = GA, where G is a $\{1,4\}$ inverse of A.

Proof:

This can be proved in the same manner as that of Theorem (3.4).

Theorem 3.10:

For $A \in (IF)_{mxn}$ and $G \in A\{1,4\}, A_G\{1,4\} = \{G+H/\text{for all } H \in (IF)_{nxm} \text{ such that } GA \ge HA\}$...(3.6)

is the set of all {1,4} inverse of A dominating G.

Proof:

Let B denote set on the R.H.S of (3.6).Suppose $G^* \in A_G\{1,4\}$ then $G^* \geq G$. Let G^* - G = H. Since $A_G\{1,4\} \subseteq A_G\{1\}$, by lemma (3.1), $G^* \geq G + H \geq G$. This implies that $G^*A \geq (G+H)A = GA$

By Theorem (3.9), $G^* \in A_G\{1,4\}$ and $G \in A_G\{1,4\}$

$$\Rightarrow G*A = GA$$
$$\Rightarrow (G+H)A = GA$$
$$\Rightarrow GA \ge HA$$

Thus $G+H \in B$. Hence for each $G^* \in A_G\{1,4\}$, there exists an unique element in B. Conversely, for any $G^* \in B$, $G^* = G+H \ge G$ with $GA \ge HA$. Hence $G^*A = GA+HA = GA$. By Theorem (3.9), it follows that $G^* \in A_G\{1,4\}$. Hence the proof.

Corollary 3.11:

Let $A \in (IF)_n$ be a symmetric and idempotent intuitionistic fuzzy matrix. Then $\{A+H/\text{for all }H \in (IF)_n \text{ such that }GA \geq HA\}$ is the set of all $\{1,4\}$ inverse of A dominating A.

Proof:

This follows from Theorem (3.10) by taking G=A. Since A is a symmetric idempotent IFM, A itself is a $\{1, 4\}$ inverse.

Remark 3.12:

In Theorem (3.10), G is a {1,4} inverse of A is essential. This is illustrated in the following example.

Example 3.13:

For
$$A = \left\langle \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \right\rangle$$
, $\left\langle \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \right\rangle \in A\{1,4\}$

$$\Rightarrow A\{1,4\} \neq \emptyset$$
Consider $G = \left\langle \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 0 & .7 \\ 0 & 0 \end{pmatrix} \right\rangle$

$$GA = \left\langle \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 0 & .7 \\ 0 & 0 \end{pmatrix} \right\rangle \left\langle \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \right\rangle$$

$$= \left\langle \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 0 & .7 \\ 0 & 0 \end{pmatrix} \right\rangle$$
For $H = \left\langle \begin{pmatrix} 1 & 0 \\ 0 & .2 \end{pmatrix}, \begin{pmatrix} 0 & .3 \\ 0 & .2 \end{pmatrix}, \begin{pmatrix} 0 & .3 \\ 0 & 0 \end{pmatrix} \right\rangle$

$$HA = \left\langle \begin{pmatrix} 1 & 0 \\ 0 & .2 \end{pmatrix}, \begin{pmatrix} 0 & .3 \\ 0 & 0 \end{pmatrix} \right\rangle \left\langle \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \right\rangle$$

$$\Rightarrow GA \geq HA$$
But $G+H = \left\langle \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 0 & .7 \\ 0 & 0 \end{pmatrix} \right\rangle + \left\langle \begin{pmatrix} 1 & 0 \\ 0 & .2 \end{pmatrix}, \begin{pmatrix} 0 & .3 \\ 0 & 0 \end{pmatrix} \right\rangle$

$$\Rightarrow G+H \not\in A\{4\}$$

$$\Rightarrow G+H \not\in A\{4\}$$

$$\Rightarrow G+H \not\in A\{4\}$$

Theorem 3.14:

Let A be symmetric idempotent matrix in $(IF)_n$. Then $A^+ = A$.

Proof:

By Theorem (3.5) and Theorem (3.10),
$$A^{(1,3)} = A+K$$
 where $A \ge AK$ and $A^{(1,4)} = A+H$ where $A \ge HA$ (3.7)

By
$$(2.3)$$
, $A+AK = A = A+HA$ (3.8)

By Theorem (3.9), for some $A^{(1,3)}$ and $A^{(1,4)}$ inverses of A. $A^{+} = A^{(1,4)}A A^{(1,3)}$ = (A+H) A (A+K) $= (A^{2} + HA) (A+K)$ = (A+HA) (A+K) = A (A+K) = A (A+K) $= A^{2} + AK$ = A + AK = A $\Rightarrow A^{+} = A.$ Hence the theorem.

References:

- [1] K.T. Atanassov, Intuitionistic Fuzzy Sets, Fuzzy Sets and Systems, vol.20, 87-96 (1986).
- [2] H.H.Cho, Regular fuzzy matrices and fuzzy equations, Fuzzy Sets and Systems, 105, (1999), 445 451.
- [3] K.H.Kim, F.W.Roush, Generalised fuzzy matrices, Fuzzy sets and Systems. 4, (1980), 293 315.
- [4] AR.Meenakshi, Fuzzy matrices: Theory and its applications, MJP Publishers, Chennai, 2008.
- [5] AR.Meenakshi and T.Gandhimathi, On Regular intuitionistic Fuzzy matrices, Int. J. of Fuzzy Math. Vol. 19, No. 2, 2011, 599-605.
- [6] M.Pal , S.K.Khan, A.K.Shyamal, Intuitionistic fuzzy matrices, NIFS, 8(2), (2002), 51-62.
- [7] S. Sriram and P. Murugadas, The Moore-Penrose Inverse of Intuitionistic Fuzzy Matrices, Int. Journal of Math. Analysis, Vol. 4, 2010, no. 36, 1779 1786.