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Abstract 
 

Several  kinds  of  invariant  quasi  and  pseudo  monotone  maps  are  
introduced.  Some  examples  are  given  which  show  that  every  quasi  and  
pseudo  monotone  maps  are  invariant  quasi  and  pseudo  monotone  maps.  
Relationships  between  generalized  invariant  quasi  and  pseudo  
monotonicity  and  generalized  invexity  are  established.   
 Our  results  are  generalizations  of  those  presented  by  X.M.Yang,  X.Q  
Yang  and  K.L.Teo. 

 
 
1.  Introduction:- 
Convexity  is  a  common  assumption  made  in  mathematical  programming.  In  
recent  years,  there  have  been  increasing  attempts  to  weaken  the  convexity  
condition.  Consequently,  several  classes  of  (generalized)  invex  functions  have  
been  introduced  in  the  literature.  More  specifically,  the  concept  of  invexity  was  
introduced  in  Ref  [1],  where  it  is  shown  that  the  Kuhn-Tucker  conditions  are  
sufficient  for  (global)  optimality  of  nonlinear  programming  problems  under  
invexity  condition.  In  Ref  [2]-[3],  Weir  and  Mond  introduced  the  concept  of  
pre  invex  functions,  and  applied  it  to  the  establishment  of  the  sufficient  
optimality  conditions  and  duality  in  (multiobjective)  nonlinear  programming.  In  
Ref  [4]  Mohan  and  Neogy  showed  that,  under  certain  conditions,  an  invex  
function  is  preinvex  and  a  quasiinvex  function  is  prequasiinvex.  Convexity  of  a  
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real-valued  function  is  the  monotonicity  of  a  vector  valued  function  and  
convexity  of  real-valued  function  is  equivalent  to  the  monotonicity  of  the  
corresponding  gradient  function.  An  important  breakthrough  generalization  of  
this  relation  was  given  in  Ref  [5]  for  various  psedo/quasiconvexities  and  
psedo/quasimonotonicities.   
 We  introduced  several  types  of  generalized  invariant  monotonicities  which  
are  generalization  of  the  (strict)  monotonicity,  (strict)  pseudomonotonicity  and  
quasimonotoniciy  mentioned  in  Ref  [5].The  main  aim  of  this  paper  is  to  
establish  relations  among  generalized  invariant  monotonicities  and  generalized  
invexities.Note  that  the  conditions  assumed  in  this  paper  are  different  from  
those  assumed  in  Ref.  [6]-[7].  Several  examples  are  given  to  show  that  these  
generalized  invariant  monotonicities  (quasi  and  pseudo)  are  proper  
generalization  of  the  corresponding  generalized  monotonicities.  Moreover,  some  
examples  are  also  presented  to  illustrate  the  properly  relation  among  the  
generalized  invariant  monotonicities.   
 In  this  paper  we  further  generalized  the  idea  of  X.M.Yang,  X.Q.Yang  and  
K.L.Teo  in  Ref  [8]  taking  into  account  of  three  variables  instead  of  two  
variables 
 
 
2.  Invariant  Quasimonotone  Maps 
Definition  2.1.  See  Ref  5.  A  map  F  is  Quasimonotone  on  a  set    of  Rn   if,  
for  every  point  x,  y,  z    ,   y x F xT ( ) 0   implies  y x F yT ( ) 0  

    z y F yT  0   implies     z y F yT  0  

    x z F yT  0   implies    x z F yT  0 . 
 
Definition  2.2.  Let     of  Rn   be  an  invex  set  with  respect  to .  A  map  F  is  
invariant  quasimonotone  with  respect  to  the  same    on     if,  for  every  
distinct  point  x,  y,  z       there  exist : R R Rn n n   Rn   such  that   

     y x z F xT, ,  0   implies      x y z F yT, ,  0  

     x z y F yT, ,  0   implies      x y z F zT, ,  0  

     y x z F zT, ,  0 implies      y z x F xT, ,  0    
 
Assumption  A.  Let  the  set     be  invex  with  respect  to ,  and  let  f R:
.Then 

   f z x y z f x  , , ( ) ,   f y z x y f z  , , ( )   ,    f x y z x f y  , , ( )    
   
Remark  2.1.  Assumption  A  is  just  the  inequality  of  the  definition  of  
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preinvexity  with   
     1 01 2,  
 
Assumption  B.  Let: X X X Rn     .  Then,  for  any  x,  y,  z   Rn   for

   0 1, .   

       y y y x y z x y z, , , , , ,    

          x y z x y z, , , ,  1 11  

          x y z x y z, , , ,  2 21  
 
Remark  2.2.  Every  quasimonotone  map  is  an  invariant  quasimonotone  map,  
but  the  converse  is  not  necessarily  true  with 
   x y z z x y, ,   2  

   z x y y x z, ,   2  

   y z x x y z, ,   2  
 
 Where      1 2 1  
 
Example  2.1.  Define  the  map  F  and    as   

 F x( ) =  sin .cos ,sin .cos , sin .cos2
1 1

2
2 2

2
3 3x x x x x x , , 

        
 x y z

y x y
z

y x y
z

y x y
z

, , [
cos sin sin

sin
,
cos sin sin

sin
,
cos sin sin

sin
]

  1 1 1

1

2 2 2

2

3 3 3

3

 

    

    
 y x z F x

x y x
z

x xT, , ( )
cos sin sin

sin
.sin cos

1 1 1

1

2
1 1 +   

  cos sin sin
sin

.sin cos
x y x

z
x x2 2 2

2

2
2 2


+  cos sin sin

sin
.sin cos

x y x
z

x x3 3 3

3

2
3 3


 

 =   sin sin sin .cos
sin

y x x x
z

1 1
2

1
2

1

1


   >  0   

 
 Clearly,  F  is  invariant  quasimonotone  with  respect  to   .  Let   

    x y 3 4 3 4 3 4 4 4 4     / , / , / , / , / , /  
 
 Then, 



     x   0 0 0, , ,  

     x y z, , , , ,  0 0 0  
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  y x F xT  ( ) /3 4 2 0 ,  but   y x F yT   ( ) /3 4 2 0  
 
 Thus,  F  is  not  quasimonotone. 
 
Definition  2.3.  See  Ref.  5.  Let    of  Rn   be  invex  set  with  respect  to .  A  
function  f  is  prequasiinvex  with  respect  to  the  same    on  if,  for  all  x,  y,  z  
     ,  

 f y f x( ) ( )   implies    f y x y z f x  , , ( ) ,  z  fixed 

 f z f y( ) ( )   implies    f z x y z f y  , , ( ) ,  x  fixed 

 f x f z( ) ( )   implies    f x x y z f z  , , ( )   ,  y  fixed 
 
Lemma  2.1.  See  Ref  .6.Let     of  Rn   be  an  invex  set  with  respect  to   ,and  
let    satisfy  Assumption  B.Then,  a  differentiable  function  f  is  prequasiinvex  
with  respect  to     on   if  and  only  if  ,for  every  of  points  x,y,z   , 

 f y f x( ) ( )   Implies    y x z f xT, , ( )  0  
 
Proof.  Let     of  Rn   be  an  invex  set  with  respect  to     ,  let     satisfy  
Assumption  B   
 Let  f  is  prequasiinvex  with  respect  to     on     ,  we  have   

 f y f x( ) ( )   implies    f y x y z f x  , , ( )  

   f y x y z f x   , , ( ) 0  

   f y x y z x   , , , 0  

   y x z f xT, , ( )  0   (Assumption  B) 
 
 Conversely  f y f x( ) ( )   implies    y x z f xT, , ( )  0  

   f y x y z x   , , , 0  

   f y x y z f x   , , ( ) 0  

   f y x y z f x  , , ( )    
 
Theorem  2.1.  Let     of  Rn   is  an  invex  set  with  respect  to ,  and  let  f  be  a  
differentiable  function  on   .If  f  and     satisfy  Assumption  B,  then  f  is  
prequasiinvex  with  respect  to  the  same     on     if  and  only  if  f   is  

 
 

   0 1,
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invariant  quasimonotone  with  respect  to  the  same     on     and,  for  all  x,  y,  z
 , 

 f y f x( ) ( )   implies.    f y x y z f x  , , ( )  
 
Proof:  Suppose  that  f  is  prequasiinvex  w.r.t     .  It  is  obvious  that  Inequality  
(C)  is  true.  Let  x,  y,  z       be  such  that   

   y x z f xT, , ( )  0    (1) 
 
 Then  we  have  f y f x( ) ( ).  
 
 By  lemma  2.1  f y f x( ) ( )   implies  that    x y z f yT, , ( )  0 . 
 This  shows  that  f   is  invariant  quasimonotone  with  respect  to  the  same . 
 Conversely,  suppose  that  f   is  invariant  quasimonotone  with  respect  to . 
 Assume  that  f  is  not  prequasiinvex  with  respect  to  the  same .  Then,  there  
exist  x,  y,  z   such  that   
 f y f x( ) ( ) ; 
 
 Furthermore,  there  exist  a     0 1,   such  that   

   f y x y z f x f y   , , ( ) ( ).    (2) 
 
 By  mean  value  theorem,  there  exist    1 2 0 1, , such  that 

      f y x y z f y x y z   , , , ,  

 =            1 1x y z f y x y zT, , ( , , )    (3) 

     f y x y z f y  , , =       x y z f y x y zT, , , ,  2    (4) 

 0 12 1         (5) 
 
 Then,  from  (2)-(5)  and  Inequality  (C),  we  have 

       x y z f y x y zT, , , ,  1 0    (6) 

       x y z f y x y zT, , , ,  2 0    (7) 
 
 From  Assumption  B,  we  have   

         y x y z y x y z 2 1, , , , ,  
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 =                 y x y z y x y z x y z   2 2 1 2, , , , , , ,  

 =                       y x y z y x y z x y x y z     2 2 1 2 2 21, , , , , [ / ] , , ,  

 =                1 2 2 21/ , , ,x y x y z  

 =       2 1 x y z, ,    (8) 

         y x y z y x y z 1 2, , , , ,  

 =                 y x y z y x y z x y z   1 1 1 2, , , , , , ,  

 =                   y x y z y x y z y y x y z    1 1 1 2, , , , , , , ,  

 =  -        y y x y z, , , 1 2  

 =       1 2 x y z, ,    (9) 
 
 Then,  by  (6)  –  (9),  it  follows  that   

              y x y z y x y z f y x y zT    2 1 1 0, , , , , , ,  

              y x y z y x y z f y x y zT    1 2 2 0, , , , , , ,  

 
 These  two  inequalities  contradict  the  invariant  quasimonotonicity  off .   
 
 
3.  Invariant  Pseudomonotone  Maps. 
Definition  3.1.  Let  Rn .  F:   Rn   is  said  to  be  pseudomonotone  on    if,  
for  every  pair  of  distinct  points  x,  y,  z    ,   

  y x f xT ( ) 0   implies   y x f yT ( ) 0  

  z y f yT ( ) 0   implies   z y f zT ( ) 0  

  x z f zT ( ) 0   implies   x z f xT ( ) 0 . 
 
Definition  3.2.  Let    of  Rn   be  an  invex  set  with  respect  to  .Then  F:  
 Rn is  said  to  be  invariant  pseudomonotone  with  respect  to    on  of  Rn   
if,  for  every  pair  of  distinct  points  x,  y,  z     

     z y x F xT, ,  0   implies      z x y F yT, ,  0   ,  z  fixed 

     y x z F zT, ,  0   implies      y z x F xT, ,  0   ,  y  fixed 
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     x z y F yT, ,  0   implies      x y z F zT, ,  0   ,  x  fixed 
 
Definition  3.3.  A  differentiable  function  f  on  a  subset    of  Rn   is  
pseduoinvex  with  respect  to    on    if,  for  every  pair  of  distinct  points  x,  y,  
z   

   z y x f xT, , ( )  0   implies  f y f x( ) ( ) ,  z  fixed   

   y x z f zT, , ( )  0   implies  f x f z( ) ( ) ,  y  fixed 

   x z y f yT, , ( )  0   implies  f z f y( ) ( ) ,  x  fixed 
 
Remark  3.1.  Every  pseudomonotone  map  is  an  invariant  pseudomonotone  map  
with   

   x y z z x y, ,   2 ,  but  the  converse  is  not  necessarily  true. 
 
Example  3.1  Define  the  map  F  and  as 

    F x x x x x1 2 3 2 31, , ,cos ,cos ,     x x x1 2 3 2 2 2, , / , / , /     

        x y z x y x y y x y y, , sin sin , sin sin / cos , sin sin / cos   1 1 2 2 2 3 3 3 , 

        x x x x y y y y z z z z   1 2 3 1 2 3 1 2 3 2 2 2, , , , , , , , / , / , /    
 
 Clearly,  F  is  invariant  pseudomonotone  with  respect  to  .Let   

      x y z        / , , , / , / , / , / , / , /3 0 0 6 6 6 4 4 4  
 
 Then, 

  y x F xT ( ) 0   and     y x F yT  




( ) / 6 1

2
1 0    

 
 Thus,  F  is  not  pseudomonotone. 
 
Remark  3.2.  Every  invariant  monotone  map  is  an  invariant  pseudomonotone  
map  with  respect  to  the  same ,  but  the  converse  is  not  necessarily  true.   
 
Example  3.2.  Define  the  maps  F  and  as   

 F x x( ) cos 2 ,   x    / , / , /2 2 2  

   x y z y z x, , cos cos cos   2 ,   x y z, , / , / , /   2 2 2  
 
 Clearly,  F  is  invariant  pseudomonotone  with  respect  to    on
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   / , / , /2 2 2 . 
 
 Let 
 x   / 6 ,  y   / 4 ,  z  =   / 3  
 
 Then, 

     z x y F x z y x F yT T, , ( ) , , ( )  0  
 
 Thus,  F  is  not  invariant  monotone  with  respect  to    on   / , / , /2 2 2 . 
 
Remark  3.3.  Every  invariant  pseudomonotone  map  is  an  invariant  
quasimonotone  map  with  respect  to  the  same    but  the  converse  is  not  true. 
 
Example  3.3.  Define  the  maps  F  and    as   

 F(x)  = sin .cos2 x x ,  x [ , ]0  , 

     x y z y x y z, , cos sin sin / sin    x y z, , [ , ] 0    . 
 
 Clearly,  F  is  invariant  quasimonotone  with  respect  to  .Let   

 x   / 2 ,  y   / 4 ,  z   / 6 . 
 
 Then, 

   z y x F xT, , ( )  0 ,  but   z x y F yT, , ( )  0 . 
 
 Thus,  F  is  not  invariant  pseudomonotone  with  respect  to . 
 It  is  well  known  that  every  pseudoconvex  function  is  quasiconvex.  This  
result  can  be  generalized  to  the  invex-type  function.  The  details  are  given  in  
the  following  lemma. 
 
Lemma  3.1.  Let  f  and    satisfy  Assumption  B.Assume  that  the  differentiable  
function  f  is  pseudoinvex  with  respect  to    on  an  invex  set    of  Rn   and  
that,  for  all  x,  y,  z , 

   (c)     f y f x   implies    f y x y z f x  , , ( )   .   
 
 Then,  f  is  prequasiinvex  with  respect  to  the  same    on . 
 
Proof.  Suppose  f  is  pseudoinvex  with  respect  to    on .  Assume  that  f  is  
not  prequasiinvex  with  respect  to .  Then  there  exist  x,  y,  z    such  that   
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    f y f x ;  z  fixed   
 
 Furthermore,  there  exist  a     0 1,   such  that  for  x y x y z   , , , 

 f x f y f x( ) ( ) ( )  . 
 
 From  Inequality  (c)  and  the  above  inequalities,  there  exists  

 y y x y z    , , ,   for     0 1, ,   such  that   

  
 

  f y f y x y z 


max , , .
,


0 1

 

 
 Then,  it  follows  that   

     x y z f yT, ,   0 . 
 
 From  Assumption  B,  we  have   

        x y z x y z, , , , ,  1        y y z x y z, , , , ,    
 
 Hence, 

            x y z f y x y z f yT, , , ,    1 0 . 
 
 Since  f  is  pseudoinvex  with  respect  to ,  it  holds  that 

  f y f x ( ) , 
 
 Which  is  a  contradiction.  Thus,  f  is  prequasiinvex  with  respect  to . 
 
Theorem  3.1.  Let    of  Rn   be  an  open  invex  set  with  respect  to ,  let  f  be  
differentiable  on    of  Rn ,  and  let  f  and    satisfy  Assumption  A  and  B  
respectively. 
 Then,  f  is  pseudoinvex  with  respect  to  on    if  and  only  if    is  
invariant  pseudomonotone  with  respect  to    on    .   
 
Proof.  Suppose  that  f  is  pseudoinvex  with  respect  to    on    .  Let  x,  y,z

, x y z   

be  such  that      x y z f yT, ,   0 . 
 
 We  need  to  prove  that   

     y x z f xT, ,   0 . 





 

 

  f
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 Assume  the  contrary,  i.e.,   

     y x z f xT, ,   0 .   (1) 
 
 By  the  pseudoinvexity  of  f  with  respect  to ,  we  have  x,  y,  z   

   y x z f xT, , ( )  0   implies  f y f x( ) ( )    (2) 
 
 From  Lemma  3.1,  every  pseudoinvex  function  is  also  prequasiinvex  with  
respect  to  the  same  .It  follows  from  (2)  and  lemma  3.1  that   

   y x z f xT, , ( )  0 . 
 
 Which  contradicts  (1).Therefore,    is  invariant  pseudomonotone  with  
respect  to . 

 Conversely,  suppose  that  f   is  invariant  pseudomonotone  on .   

 Let  x,  y,  z ,  x y z  ,be  such  that   x y z f yT, , ( )  0 .   (3) 
 
 We  need  to  prove  that f x f y( ) ( ) . 

 Assume  the  contrary  i.e., 
 f x f y( ) ( )    (4) 
 
 By  the  mean-  value  theorem,  we  have   

        f y x y z f y x y z f y x y zT      , , ( ) , , , ,    (5)   
 
for  some    0 1, .  By  assumption  A  and  B  it  follows  that   

   f y x y z f x  , , ( )    (6)   

       y y y x y z x y z, , , , , ,      (7) 
 
 Now,  from  (4)  -  (7),  we  have   

        y y y x y z f y x y z
T

, , , , , ,    0    (8) 
 
 Since  f   is  invariant  psedomonotone  with  respect  to ,  it  follows  from  (8)  
that   

    y x y z y y f
T

  , . , , 0 . 
 

 



f
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 From  Assumption  B,  we  have   

   x y z f yT, , ( )  0 . 
 
 Which  contradicts  (3).  Hence,  f  is  pseudoinvex  with  respect  to . 
 
 
4.  Strictly  Invariant  Pseudomonotone  Maps 
Definition  4.1.  A  map  F  is  strictly  pseudomonotone  on  a  set    of  Rn   if,  for  
every  pair  of  distinct  points  x,  y,  z , 

  y x F xT ( ) 0   implies   y x F yT ( ) 0  

  z y F yT ( ) 0   implies   z y F zT ( ) 0  

  x z F zT ( ) 0   implies   x z F xT ( ) 0 . 
 
Definition  4.2.  Let    of  Rn   be  an  invex  set  with  respect  to .  A  map  F  is  
strictly  invariant  Pseudomonotone  with  respect  to  on  if,  for  every  pair  of  
distinct  points   
 x,  y,  z ,   

   z, y, x T F x( )  0   implies    z, x, y T F y( )  0    

   y, x, z T F z( )  0   implies    y, z, x T F x( )  0  

   x, z, y T F y( )  0   implies    x, y, z T F z( )  0 . 
 
Remark  4.1.  Every  strictly  pseudomonotone  map  is  a  strictly  invariant  
pseudomonotone  map  with   x y z z x y, ,   2 ,  but  the  converse  is  not  
necessarily  true. 
 
Example  4.1.  Define  the  maps  F  and    as   

 F(x)  =  sin cos ,x x    x  0,  

       x y z y y x y z y, , sin cos cos cos sin sin       
 
 Clearly,  F  is  strictly  invariant  pseudomonotone  with  respect  to  on . 

 Let, 
 x  3 4 / ,  y   / 4 ,  z  = y   / 3 . 
 
 Then,  F  is  not  strictly  pseudomonotone  on   0,   . 






 
 





 x y z, , , 0 

  0,
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Remark  4.2.  Every  strictly  invariant  monotone  map  is  a  strictly  invariant  
psedomonotone  map  with  respect  to  the  same    map,  but  the  converse  is  not  
necessarily  true.   
 
Example  4.3.  Define  the  maps  F  and    as   

  F x x x sin .cos ,2    x    / , / , /2 2 2  

     x y z y z y x, , sin cos cos cos      . 
 
 Clearly,  F  is  invariant  pesudomonotone  with  respect  to    on
   / , / , /2 2 2 . 

 Let   
 x   / 6 ,  y   / 6 ,  z   / 6 . 
 
 Then, 

   y x z F xT, , ( )  0   and    x y z F yT, , ( )  0 . 
 
 Thus,  F  is  neither  strictly  invariant  psedomonotone  nor  strictly  invariant  
monotone  with  respect  to  the  same  on   / , / , /2 2 2   . 
 
Definition  4.3.  Let     of  Rn   be  an  open  invex  set  with  respect  to   .A  
differentiable  function  f  on    is  strictly  pseudoinvex  with  respect  to    on     
if,  for  every  pair  of  distinct  points  x,y,z , 

   y x z f xT, , ( )  0   implies  f(y)>f(x). 
 
Theorem  4.1.  Let    of  Rn   be  an  open  invex  set  with  respect  to ,  and  let  f  
be  differentiable  on   .If  f  and   satisfy  Assumption  A  and  C  respectively,  
then  f  is  strictly  pseudoinvex  with  respect  to    on     if  and  only  if  f is  
strictly  invariant  pseudomonotone  with  respect  to    on  .   
 
Proof.  Suppose  that  f  is  strictly  pseudoinvex  with  respect  to    on . 

 Let  x,  y,  z , x y z  ,  such  that   

   y x z f xT, , ( ) .  0    (1) 
 
 We  need  to  show  that   

   x y z f yT, , ( ) .  0  
 





 x y z, , / , / , /   2 2 2
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 On  the  contrary,  we  assume  that   

   x y z f yT, , ( ) .  0  
 
 From  the  strict  pseudoinvexity  of  f  with  respect  to    ,  it  follows  that   

 f x f y( ) ( ) .   (2) 
 
 On  the  other  hand,  from  the  strict  pseudoinvexity  of  f  with  respect  to ,  
(1)  implies  that   
 f y f x( ) ( ) , 
 
which  contradicts  (2). 
 
 Conversely,  suppose  that  f   is  strictly  pseudoinvex  with  respect  to   on  
C. 
 Let  x,  y,  z , x y z  ,  be  such  that   

   y x z f xT, , ( )  0    (3)   
 
 We  need  to  show  that   
 f y f x( ) ( )    (4) 
 
 On  the  contrary,  we  assume  that   
 f y f x( ) ( )    (5) 
 
 By  mean  value  theorem,  we  assume  that   

        f x y x z f x y x z f x y x zT      , , ( ) , , , ,    (6) 
 
 For  some  0 1    .  By  Assumption  A, 

  f x y x z f y( , , ( )  .   (7) 
 
 Now,  from  (4)-(7)  and  Assumption  B,  we  have   

        x x y x z z f x y x z
T

, , , , , ,    

 =          y x z f x y x zT, , , , 0    (8) 
 
 Since  f   is  strictly  invariant  pseudomonotone  with  respect  to ,   
 We  conclude  that   
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      x y x z x z f x
T

  , , , , 0 .   (9) 
 
 Again,  from  Assumption  B,  we  note  that   

    x y x z x z
T

 , , , ,  

 =             x y x z x y x z x x y x z z   , , , , , , , , ,  

 =      x x y x z z, , , ,  

 =    y x z, , . 
 
 Thus,  it  follow  from  (9)  that   

   y x z f xT, , ( ) ,  0  
 
which  contradicts  (3) 
 Hence,  f y f x( ) ( ) .   
 
 
5.  Conclusion 
In  this  paper,  we  have  introduced  concepts  of  generalized  invariant  Quasi  and  
pseudo  Monotonicities  and  established  their  relations  with  generalized  invexities. 
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