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Abstract

In this paper, the authors established the Ulam - Hyers, Ulam - TRassias and
Ulam - JRassias stabilities of the additive functional equation
9(x)+9(y+2)=g(x+y)+9(2)

in Generalized 2- normed spaces using direct and Fixed point method.

1 INTRODUCTION

The stability problem of functional equations originated from a question of S.M.
Ulam [21] concerning the stability of group homomorphisms. D.H. Hyers [9] gave a
first affirmative partial answer to the question of Ulam for Banach spaces. Hyers’
theorem was generalized by T. Aoki [2] for additive mappings and by Th.M. Rassias
[20] for linear mappings by considering an unbounded Cauchy difference.

The paper of Th.M. Rassias [20] has provided a lot of influence in the
development of what we call Ulam - TRassias stability of functional equations. A
generalization of the Th.M. Rassias theorem was obtained by P. Gavruta [8] by
replacing the unbounded Cauchy difference by a general control function in the spirit
of Rassias’ approach.

In 1982, J.M. Rassias [16] followed the innovative approach of the Th.M. Rassias

theorem [20] in which he replaced the factor || x||° +||y||° by | x]||°||y||* for
p,geR with p+q=1.
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In 2008, a special case of Gavruta’s theorem for the unbounded Cauchy difference
was obtained by Ravi etal., [19] by considering the summation of both the sum and
the product of two p— norms in the sprit of Rassias approach. This stability is now

called Ulam -JRassias stability of functional equations. The stability problems of
several functional equations have been extensively investigated by a number of
authors and there are many interesting results concerning this problem (see [1, 3, 7,
10, 11, 12]).

The solution and stability of the following additive functional equations

g(x+y)=9()+g(y), (1.1)
g(2x—y)+g(x—2y) =3g(x) -39(y), 1.2)
g(x+y-2z)+9(2x+2y-2) =39(x) +39(y) -39(2), (1.3)
g(2xty+2z2)=g(xxy)+g(x*z), (1.4)

were discussed in [1, 13, 18, 3]. Also M. Arunkumar et. al., [5] investigated the
generalized Ulam-Hyers stability of a functional equation
fly+z)+fly-z
f(y)= (y )2 (y-2)

which is originating from arithmetic mean of consecutive terms of an arithmetic
progression using direct and fixed point methods.

Recently, M.Arunkumar, P.Agilan [6] established the solution and stability of the
following additive functional equation and inequality

f(X)+f(y+2)-f(x+y)=1(2) (1.5)

and
I FO)+f(y+2)—f(x+y) [l F(@). (1.6)

in Banach space in the sense of Ulam, Hyers, Rassias.
In this paper, the authors established the solution and generalized Ulam-Hyers
stability of the additive functional equation

g(x)+9(y+2)=g(x+y)+9(2) (1.7)

in Generalized 2- normed spaces.

In Section 2, we present some basic definitions and notations in generalized 2-
normed spaces. In Section 3, the generalized Ulam-Hyers stability of the functional
equation (1.7) is investigated using direct method. The generalized Ulam-Hyers
stability of the functional equation (1.7) using fixed point approach is established in
Section 4.

2 PRELIMINARIES
In this section, the authors present some basic definitions and notations related to
Generalized 2-normed spaces.
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Definition 2.1 [4] Let X be linear space. A function N(.,.): X x X —[0,) is called

a generalized 2-normed space if it satisfies the following
(G1) N(x,y)=0 ifand only if x and y are linearly independent vectors.

(G2) N(x,y)=N(y,x) forall x,ye X,
(G3) N(Ax,y) =| | N(x,y) forall x,ye X and X =@, ¢ is areal or complex field,
(G4) N(x+VY,z) £N(x,z)+N(y,z) forall x,y,ze X.

The generalized 2-normed space is denoted by (X, N(.,.)).

Definition 2.2 [4] A sequence {X,} in a generalized 2-normed space (X,N(.,.)) is
called convergent if there exist xe X such that |imN(x,—x,y)=0 then

limN(x,,y) = N(x,y) forall ye X.

Definition 2.3 [4] A sequence {X,} in a generalized 2-normed space (X,N(.,.)) is
called Cauchy sequence is there exist two lineary independent elements y and z in
X such that {N(x,,y)} and {N(x,,z)} are real Cauchy sequences.

Definition 2.4 [4] A generalized 2-normed space (X,N(.,.)) is called generalized 2-
Banach space is every Cauchy sequence is convergent.

3 STABILITY RESULT IN GENERALIZED 2 - NORMED SPACE:

DIRECT METHOD
In this section, the authors investigate the generalized Ulam - Hyers stability of the
functional equation (1.7) in Generalized 2- normed space using direct method.

Now let us consider X be a generalized 2-normed space and Y be generalized 2-
Banach space, respectively.

Theorem 3.1 Let j=41. Let g: X —>Y be a mapping for which there exist a
function a,s : X* —[0,00) with the condition

lim %a((Z”j X,8),(2"y,s), (2" z,s))z 0 (3.1)

such that the functional inequality
N(g()+9g(y+2)-g(x+Y)-9(2),5) < a((x5),(,5),(2,5)) (32)

for all x,y,ze X and all se X . Then there exists a unique additive mapping
A: X —Y satisfying the functional equation (3.7) and
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1 & 5(29%,s
N(g)-AM),5)< S 3 2EXD 33
2T 2
2
where
5(29%,9) = a((29x,9),(29x,5),(0,5)) (3.4)
forall xe X and all se X . The mapping A(Xx) is defined by
2"
lim N( g(zn,- 9 ’S] = N(A(x),s) (3.5)

forall xe X andall se X .

Proof. Assume j=1. Replacing (X,Y,z) by (x,x,0) in (3.2), we get

N[g(x)— 9(2x) ,s)s%a((x,s),(x,s),(o,s)) (3.6)
forall xe X and all se X . It follows from (3.6) that
N[g(x)—@,sjsm (3.7)
2 2
where

5((x,9)) = a((x,5),(x,5),(0,5))

forall xe X andall se X . Now replacing x by 2x and dividing by 2 in (3.7), we
obtain

N(g(Zx) _9(2°x) ,s]g 5(2x,5) (3.8)

2 2° 2°

forall xe X andall se X . Using (G4), it from (3.7) and (3.8), we have
N(G(X)—%jx),s]s N(g(x)—@,sj_,_ N(g(?() _9(2°%) ’S]

22
1 6(2x,5)
gz(é(x, SHTJ (3.9

for all xe X and all se X . Proceeding further and using induction on a positive
integer n , we get

N(g(X)— g(g:x),SJS%nZlé(zzf’ ) (3.10)
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1&8(24x,s)
<=
2;; 2"

forall xe X and all se X . Inorder to prove the convergence of the sequence
9(2"x)
2" ]
replace x by 2™ x and dividing by 2" in (3.10), for any m,n >0 , we deduce

2m 2n+m " 2n 2m
PR e

1524 "x,s)
<=\ 2\ M9
2 ZO 2k+m

= 5(24MX, s)

S5 K
2k:0 2 +m

—>0asm-—o o

forall xe X andall se X . Also

(g(zmx) g )131] 1 (g(zm )_g(z“-zmx),slj

2m 2(n+m) 2m 2n
<l n-1 5(2k+m X,Sl)
- 2 e~ 2k+m
o 5(2k+m X,Sl)

1
SEZ 2k+m

k=0
—0asm— o

forall xe X andall s, € X.
Hence there exists two linearly independent elements s and s, in X such that

(e

are real Cauchy sequences. Hence the sequence {@} is Cauchy sequence. Since

Y is complete, there exists a mapping A: X —Y such that

lim N(%:X),s]= N(A(x),s)V xe X,se X

n—oo

Letting n— o in (3.10) we see that (3.3) holds for all xe X . To prove that A
satisfies (1.7), replacing (x,y,z) by (2"x,2"y,2"z) and dividing by 2" in (3.2), we
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obtain
%N(Q(Z”X)+ 9(2"(y+2))-9(2"(x+y))-9(2"2),s)

< 2—1na((2”x, s),(2"y,s),(2"z,s))

for all x,y,ze X and all se X . Letting n— o in the above inequality using (3.7)
and the definition of A(x) and (M1), we see that
AX)+ A(y+2) = A(x+y)+ A(2).

Hence A satisfies (1.7) for all x,y,ze X and all se X . To prove that A(X) is
unique, let B(x) be another additive mapping satisfying (1.7) and (3.3), then

N(A(X) - B(x),s) = zi N(A@2"X)-B(2"x),s)

g%{N (A(Z” x)—g(2" x),s)+ N (g(2” x)-B(2" x),s)}
0 5(2k+n X,S)

< —(k )
+n
k=0 2

—>0asn—ow

forall xe X and all se X . Hence A is unique.
For j =-1, we can prove a similar stability result. This completes the proof of the

theorem.
The following Corollary is an immediate consequence of Theorem 3.1 concerning
the Ulam-Hyers [9], Ulam-TRassias [20] and Ulam-JRassias [19] stabilities of (1.7).

Corollary 3.2 Let g: X —»Y be a function and there exits real numbers A and t
such that
N(g()+g(y+2)-g(x+y)-9(2).s)

A‘a
< AT+ ysIF +lzs ), t<i or t>1  (3.11)

1 1
Mixslysiflzsitixsi® +lysiF +lzslF}f, t<3 or t>7;

for all x,y,ze X and all se X . Then there exists a unique additive function
A: X —Y such that
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A,

221 %,
12-2'|

221 %8 1"
|2-2%]

N(g(x) - A(X),s)< , (3.12)

i)

forall xeX andall se X .

4 STABILITY RESULT IN GENERALIZED 2 - NORMED SPACE:

FIXED POINT METHOD
In this section, the authors has proved the generalized Ulam - Hyers stability of
Additive functional equation (1.7) in Generalized 2-normed spaces with the help of
fixed point method.

Now we will recall the fundamental results in fixed point theory.

Theorem 4.1 [14](The alternative of fixed point) Suppose that for a complete
generalized metric space (X,d) and a strictly contractive mapping T : X — X with

Lipschitz constant L. Then, for each given element x € X, either
(B) d(T"x,T"x)=0 V n>0,

or
(B,) there exists a natural number n, such that:

(i) d(T"x,T"™x)<oo forall n>n, ;
(ii) The sequence (T "x) is convergent to a fixed point y* of T
(iii) y* is the unique fixed point of T inthe set Y ={y e X :d(T °x, y) < 0};

(iv) d(y*,y)sﬁ d(y,Ty) forall yeY.

Hereafter through out this section, let us assume V be a vector space and B
Banach space respectively.

Theorem 4.2 Let g:V —» B be a mapping for which there exist a function
a,8,7:V*® —>[0,00) with the condition

im (%9, (17,9, (12,9))=0 @)

where
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satisfying the functional inequality
N(g()+9g(y+2)-g(x+Y)-9(2),5) < a((x5),(¥,5),(2,5)) (4.2)

forall x,y,zeV andall seV . Ifthere exists L = L(i) <1 such that the function

X—=>7(X,S) = 5[2,3],

has the property
X
Y8 = L y(;,s] @3

for all xeV and all seV . Then there exists unique additive function A:V — B
satisfying the functional equation (1.7) and

N(g(0) — AX),8)< = p(x,5) (4.4)

1-L

holds for all xeV andall seV .
Proof. Consider the set X ={p/p:V — B, p(0) =0} and introduce the generalized
metric on X,

d(p,q) =inf{K € (0,0) : N(p(x) - q(x),s)< Ky(x,s),xeV}.

It is easy to see that (X,d) is complete.
Define T: X — X by
TP(X) == p(ux),¥  XeV.

Now p,ge X,
d(p,q) <K= N(p(x)-q(x),s)< Ky(x,s),xeV.

= N(i p(uix)—iq(uix),sjsiKy(uix,s),xev,

= N(i p(uix)—iq(uix),s] <LKy (x,5),xeV,

= N(Tpl(x)—Tq(x),ls)s LKy(x,s),x €V,
— d(Tp,Tq) < LK.
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This implies
d(Tp,Tq) < Ld(p.q),

for all p,ge X . ie, T is a strictly contractive mapping on X with Lipschitz

constant L.
From (3.7), we have

N[g(x)—@,s)sw (4.5)

where

5((x,5)) = a((x,5),(x,5),(0,5))
forall xeV andall seV . Using (4.3) for the case i = 0, it reduces to

N[g(x)—%g@x),s]s%y(x,s)

forall xeV andall seV.
ie., d(g1Tg)S%= L="=1" <o,

Again replacing x :g in (4.5), we get

X X
N| 29| = [-g(X),s |<S| =,s |
(g(zj g()) (2 j
forall xeV andall seV . Using (4.3) for the case i =1, it reduces to

N(Zg(gj— g(x),sj <y(X,9)

forall xeV andall seV.
ie, d(Tg,g)<l=L"=l"=1""<w

In above cases, we arrive
d(g,Tg) < L

Therefore (B, (i)) holds.
By (B,(ii)), it follows that there exists a fixed point A of T in X such that

N(A(X),S)=Eim N(g(ufx),s] vV xeV, andall seV. (4.6)

In order to prove A:V — B is Additive. Replacing (x,y,z) by (yikx, 1y, uikz) in
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(4.2) and dividing by u, it follows from (4.1) and (4.6), A satisfies (4.7) for all
X,¥,z€V and all seV .i.e., A satisfies the functional equation (4.7).

By (B,(iii))), A is the wunique fixed point of T in the set
Y ={g e X :d(Tg, A) <o}, using the fixed point alternative result A is the unique
function such that

N(g(x) - A(),s)< Ky(x,5)
forall xeV andall seV and K > 0. Finally by (B,(iv)), we obtain
1
d(g,A)<——d(g,T
(9.A) <~ d(g.T0)

this implies
1-i

L
d(g,A) <——.
QA= —

Hence we conclude that

N(90) - AC),9)<

7(X,9).

forall xeV andall seV . This completes the proof of the theorem.

From Theorem 4.2, we obtain the following corollary concerning the Ulam-Hyers
[9], Ulam-TRassias [20] and Ulam-JRassias [19] stabilities of (1.7).

Corollary 4.3 Let g:V — B be a mapping and there exits real numbers A and s
such that
N(g()+g(y+2)-g(x+y)-9(2).s)

W 4
<{Gi) Mixslf+llyslf+1zsl t<l or t>1;  (47)

.. 1 1
i) Aixsilysiflzslf HixsIF +1ysIF +llzsiPf, t< or >3

forall x,y,zeV and all seV, then there exists a additive function A:V — B such
that
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i A

o 224 x|l
N(g(x)— A(x),s) <1 (ii) ST

L 22 %8 ¥

W T

forall xeV andall seV .

Proof. Setting
A

a(,y,2) =421 xs |+l y.s |+ zs |

Ay siflz s It +( s P+ 1y s 1P+l zs )}

forall x,y,zeV andall seV . Now

A

=,
Ky o ky ook H

o X, 5 Y, 1 2) —

luik lul

—0as k — o,
={—>0as k — oo,
—0as k —> .

i.e., (4.1) is holds. But we have

_”X1S”t1
[ x B X X _ |t
7(X,9) —5[5,3]—0{[5,3)[5,3],(0,3)]— 5 Ix S”St

Also,
A
H; 1
1 22
—y(x,8) = x|, =
i ;-2
W”MX,S”m :

A
LAl s I+ by s I+ 2|

-1
Hi ﬂé X 1y (),
oSl = (),
3t-1

422
ﬂist 1?” X, S|

3t w oy (X).

141

(4.8)

A
Ll s Iy s I s I gl s+l ey, s I+ 1z s P B
7,
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Hence the inequality (4.3) holds either, L=2" for t=0 if i=0 and L =2 for
t=0 if i =1. Now from (4.4), we prove the following cases for condition (i).

Case:l1 L=2"fort=0ifi=0

|- _ (2-1)1—0 _
N(g (x)- A(X),S)S 1L 7(X,8) = l—(2)‘1 A=A

Case:2 L=2fort=01ifi=1

N(@0O- A s)< S r00=2 2=

Also, (4.3) holds either, L=2"" for t<1 if i=0 and L:% fort>1 if i=1.

Now from (4.4), we prove the following cases for condition (ii) .

Case:1 L=2"" fort<1 ifi=0

27 24 2 22 22| %,
X)—A(X),s ( X, S| = ———.
N(O0-AX8) < 7x8) = st 2 2 s = 2212
1 .
Case:2 L=—+ fort>1ifi=1
2
l 1-1
L (2”] 2 22 22)1% s
N(g(X)—A(X),s)<——(X,5) = Xs|[=——"--.
(009=AK. )< 1= "1 Sixslt= o Fixst= 2T
2t1

Finally, (4.3) holds either, L=2%" for 3t<1 if i=0 and L :% for 3t>1 if
2

i =1. Now from (4.4), we prove the following cases for condition (iii).

Case:1 L=2%" for 3t<1ifi=0

a0 -A )< e =2 L P 2

22 zz,” ”3t:21||x,s||3t.
2% 0% % 2-2%

1
Case:2 L= S
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1 -1
L (23”] 2 2 2 22| x|t
N(g(x)—AX),s)<——¢(x,5) = =x,s|P= =Ixs|P= .
(009=A0.s)= = 7k =" " Xl =g e IXsIF= 5
23t—1

Hence the proof of the corollary is complete.
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