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Abstract 
 

Let G be a (, (ܩ)ܸ:݂ graph. Let (ݍ → {1, 2, …  be a function. For each {,
edge ݒݑ, assign the label |݂(ݑ)−  is called a difference cordial if ݂ is ݂ .|(ݒ)݂
a one to one map and ห ݁(0)− ݁(1)ห ≤ 1 where ݁(1) and ݁(0) denote the 
number of edges labeled with 1 and not labeled with 1 respectively. A graph 
with admits a difference cordial labeling is called a difference cordial graph. 
In this paper, we investigate the difference cordial labeling behavior of 
)ܣܦ ܶ)⊙ܭଵ, ܣܦ( ܶ)⊙ܭଶ, ܣܦ( ܶ)⊙ (ܳ)ܣܦ ,ଵܭ2  ଶܭ⊙(ܳ)ܣܦ ,ଵܭ⊙
and ܣܦ(ܳ)⊙ )ܣܦ ଵwhereܭ2 ܶ) and ܣܦ(ܳ) are double alternate triangular 
snake and double alternate quadrilateral snakes respectively. 
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Introduction:  
In this paper we have considered only simple and undirected graph. Let ܩ =  be (ܧ,ܸ)
a (,  is called |ܧ| and the number ܩ graph. The number |ܸ| is called the order of (ݍ
the size of ܩ. The notion of difference cordial labeling has been introduced by R. 
Ponraj, S. Sathish Narayanan, R. Kala in [3]. In [3, 4, 5, 6, 7] difference cordial 
labeling behavior of several graphs like path, cycle, complete graph, complete 
bipartite graph, bistar, wheel, web, sunflower graph, pyramid, grid, Mongolian tent, 
݊-cube, ܩ ⊙ ܲ ܩ , ݉) ଵܭ݉⊙ = 1, 2, 3) where ܩ is either unicycle or tree, crown 
ܥ ଵ, comb ܲܭ⊙ ଵ, ܲܭ⊙ ܥ ,ܥ⊙ , ܹܥ⊙ ଶ, ܹܭ⊙ ⊙ ܮ ,ଵܭ2  ,ଵܭ⊙
ܮ ⊙ ܮ ,ଵܭ2 ܦ ,ଶܭ⊙ ܶ ܦ ,ଵܭ⊙ ܶ ܦ ,ଶܭ⊙ ܶ ⊙ ܳܦ ,ଵܭ2 ܳܦ ,ଵܭ⊙  ,ଶܭ⊙
ܳܦ ⊙  ଵ and some more standard graphs have been investigated. In this paper weܭ2
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are going to investigate the difference cordial labeling behavior of ܣܦ( ܶ)⊙ܭଵ, 
)ܣܦ ܶ)⊙ܭଶ, ܣܦ( ܶ)⊙ (ܳ)ܣܦ ,ଵܭ2 ⊙(ܳ)ܣܦ ଶ andܭ⊙(ܳ)ܣܦ ,ଵܭ⊙
)ܣܦ ଵwhereܭ2 ܶ) and ܣܦ(ܳ) are double alternate triangular snake and double 
alternate quadrilateral snakes respectively. Let ݔ be any real number. Then ⌊ݔ⌋ stands 
for the largest integer less than or equal to ݔ and ⌈ݔ⌉ stands for the smallest integer 
greater than or equal to ݔ. Terms and definitions not defined here are used in the sense 
of Harary [2]. 
 
 
Difference Cordial Labeling  
Definition 2.1: 
Let G be a (, ,to {1 (ܩ)ܸ graph. Let ݂ be a map from (ݍ 2, …  ,ݒݑ For each edge .{,
assign the label |݂(ݑ)− is called difference cordial labeling if ݂ is 1 ݂ .|(ݒ)݂ − 1 and 
ห ݁(0)− ݁(1)ห ≤ 1 where ݁(1) and ݁(0) denote the number of edges labeled with 
1 and not labeled with 1 respectively. A graph with a difference cordial labeling is 
called a difference cordial graph. 
 The corona of ܩ with ܩ ,ܪ  ܩ is the graph obtained by taking one copy of ܪ⊙
and  copies of ܪ and joining the ith vertex of ܩ with an edge to every vertex in the ith 
copy of ܪ. 
 A double alternate triangular snake ܣܦ( ܶ) consists of two alternate triangular 
snakes that have a common path. That is, a double alternate triangular snake is 
obtained from a path ݑଵ,ݑଶ  ାଵ (alternatively) to two newݑ  andݑ  by joiningݑ…
vertices ݒ and ݓ. 
 
Theorem 2.2: ܣܦ( ܶ)⊙ܭଵ is difference cordial. 
 
Proof: Case (i): The two triangles starts from ݑଵ and ends with ݑ.  
Let ܸ(ܣܦ( ܶ)⊙ܭଵ) = ܸ൫ܣܦ( ܶ)൯ ∪ :ᇱݑ} 1 ≤ ݅ ≤ ݊} ∪ ቄݒᇱ :ᇱݓ, 1 ≤ ݅ ≤ 

ଶ
ቅ and 

)ܣܦ)ܧ ܶ)⊙ܭଵ) = )ܣܦ൫ܧ ܶ)൯ ∪ :ᇱݑݑ} 1 ≤ ݅ ≤ ݊} ∪ ቄݒݒᇱ,ݓ :ᇱݓ  1 ≤ ݅ ≤ 
ଶ
ቅ. 

Define ݂:ܸ(ܣܦ( ܶ)⊙ܭଵ) → {1, 2 … 4݊} by ݂(ݑଶିଵ) = 4݅ − 2, 1 ≤ ݅ ≤ 
ଶ
, 

(ଶݑ)݂ = 4݅ − 1, 1 ≤ ݅ ≤ 
ଶ
ଶିଵᇱݑ)݂ , ) = 4݅ − 3, 1 ≤ ݅ ≤ 

ଶ
ଶᇱݑ)݂ , ) = 4݅, 1 ≤ ݅ ≤ 

ଶ
, 

(ݒ)݂ = 2݊ + 2݅ − 1, 1 ≤ ݅ ≤ 
ଶ
(ᇱݒ)݂ , = 2݊ + 2݅, 1 ≤ ݅ ≤ 

ଶ
(ݓ)݂ , = 3݊ + 2݅ −

1, 1 ≤ ݅ ≤ 
ଶ
(ᇱݓ)݂ , = 3݊ + 2݅, 1 ≤ ݅ ≤ 

ଶ
. Since ݁(1) = ହ

ଶ
 and ݁(0) = ହିଶ

ଶ
, ݂ is a 

difference cordial labeling of ܣܦ( ܶ)⊙ܭଵ. 
 
Case (ii): The two triangles starts from ݑଶ and ends with ݑିଵ.  
Define a map ݂:ܸ(ܣܦ( ܶ)⊙ܭଵ) → {1, 2, … 4݊ − 4} by ݂(ݑଶ) = 4݅ − 2, 1 ≤ ݅ ≤
ିଶ
ଶ

(ଶାଵݑ)݂ , = 4݅ − 1, 1 ≤ ݅ ≤ ିଶ
ଶ

ଶᇱݑ)݂ , ) = 4݅ − 3, 1 ≤ ݅ ≤ ିଶ
ଶ

ଶାଵᇱݑ)݂ , ) =

4݅, 1 ≤ ݅ ≤ ିଶ
ଶ

(ଵݑ)݂ , = 2݊ − ଵᇱݑ)݂ ,3 ) = 2݊ − (ݑ)݂ ,2 = 2݊ − ᇱݑ)݂ ,1 ) = 2݊, 

(ݒ)݂ = 2݊ + 2݅ − 1, 1 ≤ ݅ ≤ ିଶ
ଶ

(ᇱݒ)݂ , = 2݊ + 2݅, 1 ≤ ݅ ≤ ିଶ
ଶ

(ݓ)݂ , = 3݊ +
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2݅ − 3, 1 ≤ ݅ ≤ ିଶ
ଶ

(ᇱݓ)݂ , = 3݊ + 2݅ − 2, 1 ≤ ݅ ≤ ିଶ
ଶ

. Since ݁(1) = ହି
ଶ

 and 

݁(0) = ହି଼
ଶ

, ݂ is a difference cordial labeling of ܣܦ( ܶ)⊙ܭଵ. 
 
Case (iii): The two triangles starts from ݑଶ and ends with ݑ.  
Label the vertices ݑଶ ,ଶାଵݑ, ଶᇱݑ , ଶାଵᇱݑ ݒ, ᇱݒ,  ቀ1 ≤ ݅ ≤ ିଵ

ଶ
ቁ as in case (ii) and define 

(ଵݑ)݂ = 2݊ − ଵᇱݑ)݂ ,1 ) = (ݓ)݂ ,2݊ = 3݊ + 2݅ − 2, 1 ≤ ݅ ≤ ିଵ
ଶ

(ᇱݓ)݂ , = 3݊ +

2݅ − 1, 1 ≤ ݅ ≤ ିଵ
ଶ

. Since ݁(1) = ହିଷ
ଶ

 and ݁(0) = ହିହ
ଶ

, ݂ is a difference cordial 
labeling of ܣܦ( ܶ)⊙ܭଵ.  ∎ 

 
A difference cordial labeling of ܣܦ(଼ܶ  ଵ where the two triangles starts fromܭ⊙(

 .is shown in figure 1 ଼ݑ ଵ and ends withݑ
 

 
 

Figure 1 
 
 
 A difference cordial labeling of ܣܦ( ଵܶ)⊙ܭଵ where the two triangles starts from 
 .ଽ is shown in figure 2ݑ ଶ and ends withݑ

 

 
 

Figure 2 
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 A difference cordial labeling of ܣܦ( ଽܶ)⊙ܭଵ where the two triangles starts from 
 .ଽ is shown in figure 3ݑ ଶ and ends withݑ

 

 
 

Figure 3 
 
 
Theorem 2.3: ܣܦ( ܶ)⊙  .ଵ is difference cordialܭ2
 
Proof: Case (i): The two triangles starts from ݑଵ and ends with ݑ.  
Let ܸ(ܣܦ( ܶ)⊙ (ଵܭ2 = ܸ൫ܣܦ( ܶ)൯ ∪ ,ᇱݑ} :ᇱᇱݑ 1 ≤ ݅ ≤ ݊} ∪ ቄݒᇱ ᇱᇱݒ, :ᇱᇱݓ,ᇱݓ, 1 ≤
݅ ≤ 

ଶൟ and ܣܦ)ܧ( ܶ)⊙ (ଵܭ2 = )ܣܦ൫ܧ ܶ)൯ ∪ ,ᇱݑݑ} :ᇱᇱݑݑ 1 ≤ ݅ ≤ ݊} ∪

ቄݒݒᇱ, ᇱᇱݒݒ :ᇱᇱݓݓ,ᇱݓݓ, 1 ≤ ݅ ≤ 
ଶ
ቅ. Define a map ݂:ܸ(ܣܦ( ܶ)⊙ (ଵܭ2 →

{1, 2 … 6݊} by ݂(ݑଶିଵ) = 9݅ − 7, 1 ≤ ݅ ≤ 
ଶ
(ଶݑ)݂ , = 9݅ − 1, 1 ≤ ݅ ≤ 

ଶ
ଶିଵᇱݑ)݂ , ) =

9݅ − 8, 1 ≤ ݅ ≤ 
ଶ
ଶᇱݑ)݂ , ) = 9݅ − 2, 1 ≤ ݅ ≤ 

ଶ
ଶିଵᇱᇱݑ)݂ , ) = 9݅ − 6, 1 ≤ ݅ ≤ 

ଶ
, 

ଶᇱᇱݑ)݂ ) = 9݅, 1 ≤ ݅ ≤ 
ଶ
(ݒ)݂ , = 9݅ − 4, 1 ≤ ݅ ≤ 

ଶ
(ᇱݒ)݂ , = 9݅ − 5, 1 ≤ ݅ ≤ 

ଶ
, 

(ᇱᇱݒ)݂ = 9݅ − 3, 1 ≤ ݅ ≤ 
ଶ
(ݓ)݂ , = ଽ

ଶ
+ 3݅ − 2, 1 ≤ ݅ ≤ 

ଶ
(ᇱݓ)݂ , = ଽ

ଶ
+ 3݅ −

1, 1 ≤ ݅ ≤ 
ଶ
(ᇱᇱݓ)݂ , = ଽ

ଶ
+ 3݅, 1 ≤ ݅ ≤ 

ଶ
. Since ݁(1) = 

ଶ
 and ݁(0) = ିଶ

ଶ
, ݂ is a 

difference cordial labeling of ܣܦ( ܶ)⊙   .ଵܭ2
 
Case (ii): The two triangles starts from ݑଶ and ends with ݑିଵ.  
Define a map ݂:ܸ(ܣܦ( ܶ)⊙ (ଵܭ2 → {1, 2 … 6݊ − 6} by ݂(ݑ) = 3݅ − 1, 1 ≤ ݅ ≤ ݊, 
(ᇱݑ)݂ = 3݅ − 2, 1 ≤ ݅ ≤ (ᇱᇱݑ)݂ ,݊ = 3݅, 1 ≤ ݅ ≤ (ݒ)݂ ,݊ = 3݊ + 3݅ − 1, 1 ≤ ݅ ≤
ିସ
ଶ

(ᇱݒ)݂ , = 3݊ + 3݅ − 2, 1 ≤ ݅ ≤ ିସ
ଶ

(ᇱᇱݒ)݂ , = 3݊ + 3݅, 1 ≤ ݅ ≤ ିସ
ଶ

, ݂ ൬ݒషమ
మ
൰ =

ଽିଵ
ଶ

, ݂ ൬ݒషమ
మ

ᇱ ൰ = ଽି଼
ଶ

, ݂ ൬ݒషమ
మ

ᇱᇱ ൰ = ଽି
ଶ

(ݓ)݂ , = ଽିଵ
ଶ

+ 3݅, 1 ≤ ݅ ≤ ିଶ
ଶ

(ᇱݓ)݂ , =
ଽି଼
ଶ

+ 3݅, 1 ≤ ݅ ≤ ିଶ
ଶ

(ᇱᇱݓ)݂ , = ଽି
ଶ

+ 3݅, 1 ≤ ݅ ≤ ିଶ
ଶ

. Since ݁(1) = ି଼
ଶ

 and 

݁(0) = ିଵ
ଶ

, ݂ is a difference cordial labeling of ܣܦ( ܶ)⊙   .ଵܭ2
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Case (iii): The two triangles starts from ݑଶ and ends with ݑ.  
Label the vertices ݑ, ᇱᇱ (1ݑ,ᇱݑ ≤ ݅ ≤ ݊) and ݒ ᇱݒ, , ᇱᇱݒ  ቀ1 ≤ ݅ ≤ ିଷ

ଶ
ቁ as in case (ii) 

and define ݂ ൬ݒషభ
మ
൰ = ଽି

ଶ
, ݂ ൬ݒషభ

మ

ᇱ ൰ = ଽିହ
ଶ

, ݂ ൬ݒషభ
మ

ᇱᇱ ൰ = ଽିଷ
ଶ

(ݓ)݂ , = ଽି
ଶ

+

3݅, 1 ≤ ݅ ≤ ିଵ
ଶ

(ᇱݓ)݂ , = ଽିହ
ଶ

+ 3݅, 1 ≤ ݅ ≤ ିଵ
ଶ

(ᇱᇱݓ)݂ , = ଽିଷ
ଶ

+ 3݅, 1 ≤ ݅ ≤ ିଵ
ଶ

. 

Since ݁(1) = ݁(0) = ିହ
ଶ

, ݂ is a difference cordial labeling of ܣܦ( ܶ)⊙  ∎ .ଵܭ2
 
Theorem 2.4: ܣܦ( ܶ)⊙ܭଶ is difference cordial. 
Proof: Case (i): The two triangles starts from ݑଵ and ends with ݑ.  
Let ܸ(ܣܦ( ܶ)⊙ܭଶ) = ܸ൫ܣܦ( ܶ)൯ ∪ ,ᇱݑ} :ᇱᇱݑ 1 ≤ ݅ ≤ ݊} ∪ ቄݒᇱ , ᇱᇱݒ :ᇱᇱݓ,ᇱݓ, 1 ≤ ݅ ≤

ଶൟ and (ܣܦ( ܶ)⊙ (ଵܭ2 = )ܣܦ൫ܧ ܶ)൯ ∪ ,ᇱݑݑ} ᇱᇱݑݑ :ᇱᇱݑᇱݑ, 1 ≤ ݅ ≤ ݊} ∪

ቄݒݒᇱ, ᇱᇱݒݒ ᇱᇱݒᇱݒ, :ᇱᇱݓᇱݓ,ᇱᇱݓݓ,ᇱݓݓ, 1 ≤ ݅ ≤ 
ଶ
ቅ. Define a map ݂:ܸ(ܣܦ( ܶ)⊙

(ଵܭ2 → {1, 2 … 6݊} by ݂(ݑଶିଵ) = 6݅ − 3, 1 ≤ ݅ ≤ 
ଶ
ଶିଵᇱݑ)݂ , ) = 6݅ − 4, 1 ≤ ݅ ≤ 

ଶ
, 

ଶିଵᇱᇱݑ)݂ ) = 6݅ − 5, 1 ≤ ݅ ≤ 
ଶ
(ଶݑ)݂ , = 6݅ − 2, 1 ≤ ݅ ≤ 

ଶ
ଶᇱݑ)݂ , ) = 6݅, 1 ≤ ݅ ≤ 

ଶ
, 

ଶᇱᇱݑ)݂ ) = 6݅ − 1, 1 ≤ ݅ ≤ 
ଶ
(ݒ)݂ , = 3݊ + 3݅ − 2, 1 ≤ ݅ ≤ 

ଶ
(ᇱݒ)݂ , = 3݊ + 3݅ −

1, 1 ≤ ݅ ≤ 
ଶ
(ᇱᇱݒ)݂ , = 3݊ + 3݅, 1 ≤ ݅ ≤ 

ଶ
(ݓ)݂ , = ଽିସ

ଶ
+ 3݅, 1 ≤ ݅ ≤ 

ଶ
(ᇱݓ)݂ , =

ଽିଶ
ଶ

+ 3݅, 1 ≤ ݅ ≤ 
ଶ
(ᇱᇱݓ)݂ , = ଽ

ଶ
+ 3݅, 1 ≤ ݅ ≤ 

ଶ
. Since ݁(1) = ଽ

ଶ
 and ݁(0) =

ଽିଶ
ଶ

, ݂ is a difference cordial labeling of ܣܦ( ܶ)⊙ܭଶ.  
 
Case (ii): The two triangles starts from ݑଶ and ends with ݑିଵ.  
Define a map ݂:ܸ(ܣܦ( ܶ)⊙ܭଶ) → {1, 2 … 6݊ − 6} by ݂(ݑଶ) = 6݅ − 3, 1 ≤ ݅ ≤
ିଶ
ଶ

(ଶାଵݑ)݂ , = 6݅ − 2, 1 ≤ ݅ ≤ ିଶ
ଶ

ଶᇱݑ)݂ , ) = 6݅ − 4, 1 ≤ ݅ ≤ ିଶ
ଶ

ଶାଵᇱݑ)݂ , ) =

6݅, 1 ≤ ݅ ≤ ିଶ
ଶ

, ଶᇱᇱݑ)݂ ) = 6݅ − 5, 1 ≤ ݅ ≤ ିଶ
ଶ

ଶାଵᇱᇱݑ)݂ , ) = 6݅ − 1, 1 ≤ ݅ ≤ ିଶ
ଶ

, 
(ଵݑ)݂ = 3݊ − ଵᇱݑ)݂ ,5 ) = 3݊ − (ଵᇱᇱݑ)݂ ,4 = 3݊ − (ݑ)݂ ,3 = 3݊ − ᇱݑ)݂ ,2 ) = 3݊ −
(ᇱᇱݑ)݂ ,1 = (ݒ)݂ ,3݊ = 3݊ + 3݅ − 2, 1 ≤ ݅ ≤ ିଶ

ଶ
(ᇱݒ)݂ , = 3݊ + 3݅ − 1, 1 ≤ ݅ ≤

ିଶ
ଶ

(ᇱᇱݒ)݂ , = 3݊ + 3݅, 1 ≤ ݅ ≤ ିଶ
ଶ

(ݓ)݂ , = ଽିଵ
ଶ

+ 3݅, 1 ≤ ݅ ≤ ିଶ
ଶ

(ᇱݓ)݂ , =
ଽି଼
ଶ

+ 3݅, 1 ≤ ݅ ≤ ିଶ
ଶ

(ᇱᇱݓ)݂ , = ଽି
ଶ

+ 3݅, 1 ≤ ݅ ≤ ିଶ
ଶ

. Since ݁(1) = ଽିଵ
ଶ

 and 

݁(0) = ଽିଵଶ
ଶ

, ݂ is a difference cordial labeling of ܣܦ( ܶ)⊙ܭଶ. 
 
Case (iii): The two triangles starts from ݑଶ and ends with ݑ.  
Label the vertices ݑଶ ,ଶାଵݑ, ଶᇱݑ , ଶାଵᇱݑ ଶᇱᇱݑ, , ଶାଵᇱᇱݑ ݒ, ,ᇱݒ, ᇱᇱݒ  ቀ1 ≤ ݅ ≤ ିଵ

ଶ
ቁ as in case 

(ii) and define ݂(ݑଵ) = 3݊ − ଵᇱݑ)݂ ,2 ) = 3݊ − (ଵᇱᇱݑ)݂ ,1 = (ݓ)݂ ,3݊ = ଽି
ଶ

+

3݅, 1 ≤ ݅ ≤ ିଵ
ଶ

(ᇱݓ)݂ , = ଽିହ
ଶ

+ 3݅, 1 ≤ ݅ ≤ ିଵ
ଶ

(ᇱᇱݓ)݂ , = ଽିଷ
ଶ

+ 3݅, 1 ≤ ݅ ≤ ିଵ
ଶ

. 

Since ݁(1) = ଽିହ
ଶ

 and ݁(0) = ଽି
ଶ

, ݂ is a difference cordial labeling of ܣܦ( ܶ)⊙
 ∎    .ଶܭ
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 A double alternate quadrilateral snake ܣܦ(ܳ) consists of two alternate 
quadrilateral snakes that have a common path. That is, a double alternate quadrilateral 
snake is obtained from a path ݑଵ, ଶݑ  ାଵ (alternatively) toݑ  andݑ  by joiningݑ…
new vertices ݒ, ݔ and ݓ, ݕ respectively and then joining ݒ ݕ,ݔ  andݓ, .  
 
Theorem 2.5: ܣܦ(ܳ)⊙ܭଵ is difference cordial. 
 
Proof: Case (i): The two squares starts from ݑଵ and ends with ݑ.  
Let ܸ(ܣܦ(ܳ)⊙ܭଵ) = ܸ൫ܣܦ(ܳ)൯ ∪ :ᇱݑ} 1 ≤ ݅ ≤ ݊} ∪ ቄݒᇱ ,ᇱݓ, :ᇱݕ,ᇱݔ 1 ≤ ݅ ≤ 

ଶ
ቅ 

and ܧ(ܣܦ(ܳ)⊙ܭଵ) ∪ ൯(ܳ)ܣܦ൫ܧ ∪ ቄݒݒᇱ ,ᇱݓݓ, :ᇱݕݕ,ᇱݔݔ 1 ≤ ݅ ≤ 
ଶ
ቅ ∪

:ᇱݑݑ} 1 ≤ ݅ ≤ ݊}. Define a map ݂:ܸ(ܣܦ(ܳ)⊙ܭଵ) → {1, 2 … 6݊} by ݂(ݑ) =
2݊ + 2݅ − 1, 1 ≤ ݅ ≤ (ᇱݑ)݂ ,݊ = 2݊ + 2݅, 1 ≤ ݅ ≤ (ݒ)݂ ,݊ = 4݅ − 2, 1 ≤ ݅ ≤ 

ଶ
, 

(ᇱݒ)݂ = 4݅ − 3, 1 ≤ ݅ ≤ 
ଶ
(ݓ)݂ , = 4݅ − 1, 1 ≤ ݅ ≤ 

ଶ
(ᇱݓ)݂ , = 4݅, 1 ≤ ݅ ≤ 

ଶ
, 

(ݔ)݂ = 4݊ + 4݅ − 3, 1 ≤ ݅ ≤ 
ଶ
(ᇱݔ)݂ , = 4݊ + 4݅ − 2, 1 ≤ ݅ ≤ 

ଶ
(ݕ)݂ , = 4݊ + 4݅ −

1, 1 ≤ ݅ ≤ 
ଶ
(ᇱݕ)݂ , = 4݊ + 4݅, 1 ≤ ݅ ≤ 

ଶ
. Since ݁(1) = 

ଶ
 and ݁(0) = ିଶ

ଶ
, ݂ is a 

difference cordial labeling of ܣܦ(ܳ)⊙ܭଵ. 
 
Case (ii): The two squares starts from ݑଶ and ends with ݑିଵ.  
Label the vertices ݒ, ᇱݒ ݓ, ᇱݓ,  ቀ1 ≤ ݅ ≤ ିଶ

ଶ
ቁ as in case (i) and define ݂(ݑ) = 2݊ +

2݅ − 5, 1 ≤ ݅ ≤ (ᇱݑ)݂ ,݊ = 2݊ + 2݅ − 4, 1 ≤ ݅ ≤ (ݔ)݂ ,݊ = 4݊ + 4݅ − 7, 1 ≤ ݅ ≤
ିଶ
ଶ

(ᇱݔ)݂ , = 4݊ + 4݅ − 6, 1 ≤ ݅ ≤ ିଶ
ଶ

(ݕ)݂ , = 4݊ + 4݅ − 5, 1 ≤ ݅ ≤ ିଶ
ଶ

(ᇱݕ)݂ , =

4݊ + 4݅ − 4, 1 ≤ ݅ ≤ ିଶ
ଶ

. Since ݁(1) = ିଵ
ଶ

 and ݁(0) = ିଵଶ
ଶ

, ݂ is a difference 
cordial labeling of ܣܦ(ܳ)⊙ܭଵ. 
 
Case (iii): The two squares starts from ݑଶ and ends with ݑ.  
Label the vertices ݒ, ᇱݒ ݓ, ᇱݓ,  ቀ1 ≤ ݅ ≤ ିଵ

ଶ
ቁ as in case (i) and define ݂(ݑ) = 2݊ +

2݅ − 3, 1 ≤ ݅ ≤ (ᇱݑ)݂ ,݊ = 2݊ + 2݅ − 2, 1 ≤ ݅ ≤ (ݔ)݂ ,݊ = 4݊ + 4݅ − 5, 1 ≤ ݅ ≤
ିଵ
ଶ

(ᇱݔ)݂ , = 4݊ + 4݅ − 4, 1 ≤ ݅ ≤ ିଵ
ଶ

(ݕ)݂ , = 4݊ + 4݅ − 3, 1 ≤ ݅ ≤ ିଵ
ଶ

(ᇱݕ)݂ , =

4݊ + 4݅ − 2, 1 ≤ ݅ ≤ ିଵ
ଶ

. Since ݁(1) = ିହ
ଶ

 and ݁(0) = ି
ଶ

, ݂ is a difference 
cordial labeling of ܣܦ(ܳ)⊙ܭଵ.  ∎ 
 
Theorem 2.6: ܣܦ(ܳ)⊙  .ଵ is difference cordialܭ2
 
Proof: Case (i): The two squares starts from ݑଵ and ends with ݑ.  
Let ܸ(ܣܦ(ܳ)⊙ (ଵܭ2 = ܸ൫ܣܦ(ܳ)൯ ∪ ቄݒᇱ , ᇱᇱݒ ,ᇱᇱݓ,ᇱݓ, ,ᇱݔ ,ᇱᇱݔ :ᇱᇱݕ,ᇱݕ 1 ≤ ݅ ≤ 

ଶ
ቅ 

∪ ,ᇱݑ} :ᇱᇱݑ 1 ≤ ݅ ≤ ݊} and ܣܦ)ܧ(ܳ)⊙ (ଵܭ2 ∪ ൯(ܳ)ܣܦ൫ܧ ∪ ,ᇱݑݑ} :ᇱᇱݑݑ 1 ≤ ݅ ≤
݊} ∪ ቄݒݒᇱ , ᇱᇱݓݓ,ᇱݓݓ,ᇱᇱݒݒ ,ᇱݔݔ, ,ᇱᇱݔݔ ,ᇱݕݕ :ᇱᇱݕݕ 1 ≤ ݅ ≤ 

ଶ
ቅ. Define a map 

⊙(ܳ)ܣܦ)ܸ:݂ (ଵܭ2 → {1, 2 … 9݊} by ݂(ݑ) = 3݅ − 1, 1 ≤ ݅ ≤ (ᇱݑ)݂ ,݊ = 3݅ −
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2, 1 ≤ ݅ ≤ (ᇱᇱݑ)݂ ,݊ = 3݅, 1 ≤ ݅ ≤ (ݒ)݂ ,݊ = 3݊ + 6݅ − 4, 1 ≤ ݅ ≤ 
ଶ
(ᇱݒ)݂ , = 3݊ +

6݅ − 5, 1 ≤ ݅ ≤ 
ଶ
(ᇱᇱݒ)݂ , = 3݊ + 6݅ − 3, 1 ≤ ݅ ≤ 

ଶ
(ݓ)݂ , = 3݊ + 6݅ − 1, 1 ≤ ݅ ≤ 

ଶ
, 

(ᇱݓ)݂ = 3݊ + 6݅ − 2, 1 ≤ ݅ ≤ 
ଶ
(ᇱᇱݓ)݂ , = 3݊ + 6݅, 1 ≤ ݅ ≤ 

ଶ
(ݔ)݂ , = 6݊ + 6݅ −

5, 1 ≤ ݅ ≤ 
ଶ
(ᇱݔ)݂ , = 6݊ + 6݅ − 4, 1 ≤ ݅ ≤ 

ଶ
(ᇱᇱݔ)݂ , = 6݊ + 6݅ − 3, 1 ≤ ݅ ≤ 

ଶ
, 

(ݕ)݂ = 6݊ + 6݅ − 2, 1 ≤ ݅ ≤ 
ଶ
(ᇱݕ)݂ , = 6݊ + 6݅ − 1, 1 ≤ ݅ ≤ 

ଶ
(ᇱᇱݕ)݂ , = 6݊ +

6݅, 1 ≤ ݅ ≤ 
ଶ
. Since ݁(1) = 5݊ and ݁(0) = 5݊ − 1, ݂ is a difference cordial 

labeling of ܣܦ(ܳ)⊙   .ଵܭ2
 
Case (ii): The two squares starts from ݑଶ and ends with ݑିଵ.  
Define a map ݂:ܸ(ܣܦ(ܳ)⊙ (ଵܭ2 → {1, 2 … 9݊ − 12} by ݂(ݑ) = 3݊ + 3݅ −
7, 1 ≤ ݅ ≤ ݊ − (ᇱݑ)݂ ,1 = 3݊ + 3݅ − 8, 1 ≤ ݅ ≤ ݊ − (ᇱᇱݑ)݂ ,1 = 3݊ + 3݅ − 6, 1 ≤
݅ ≤ ݊ − (ݑ)݂ ,1 = 6݊ − ᇱݑ)݂ ,8 ) = 6݊ − (ᇱᇱݑ)݂ ,7 = 6݊ − (ݒ)݂ ,6 = 6݅ − 4, 1 ≤
݅ ≤ ିଶ

ଶ
(ᇱݒ)݂ , = 6݅ − 5, 1 ≤ ݅ ≤ ିଶ

ଶ
(ᇱᇱݒ)݂ , = 6݅ − 3, 1 ≤ ݅ ≤ ିଶ

ଶ
(ݓ)݂ , = 6݅ −

1, 1 ≤ ݅ ≤ ିଶ
ଶ

(ᇱݓ)݂ , = 6݅ − 2, 1 ≤ ݅ ≤ ିଶ
ଶ

(ᇱᇱݓ)݂ , = 6݅, 1 ≤ ݅ ≤ ିଶ
ଶ

(ݔ)݂ , =

6݊ + 6݅ − 11, 1 ≤ ݅ ≤ ିଶ
ଶ

(ᇱݔ)݂ , = 6݊ + 6݅ − 10, 1 ≤ ݅ ≤ ିଶ
ଶ

(ᇱᇱݔ)݂ , = 6݊ + 6݅ −

9, 1 ≤ ݅ ≤ ିଶ
ଶ

(ݕ)݂ , = 6݊ + 6݅ − 8, 1 ≤ ݅ ≤ ିଶ
ଶ

(ᇱݕ)݂ , = 6݊ + 6݅ − 7, 1 ≤ ݅ ≤
ିଶ
ଶ

(ᇱᇱݕ)݂ , = 6݊ + 6݅ − 6, 1 ≤ ݅ ≤ ିଶ
ଶ

. Since ݁(1) = 5݊ − 7 and ݁(0) = 5݊ − 8, 
݂ is a difference cordial labeling of ܣܦ(ܳ)⊙   .ଵܭ2
 
Case (iii): The two squares starts from ݑଶ and ends with ݑ.  
Label the vertices ݒ, ᇱݒ ᇱᇱݒ, ݓ, ᇱᇱݓ,ᇱݓ,  ቀ1 ≤ ݅ ≤ ିଵ

ଶ
ቁ as in case (ii) and define 

(ାଵݑ)݂ = 3݊ + 3݅ − 4, 1 ≤ ݅ ≤ ݊ − ାଵᇱݑ)݂ ,1 ) = 3݊ + 3݅ − 5, 1 ≤ ݅ ≤ ݊ − 1, 
ାଵᇱᇱݑ)݂ ) = 3݊ + 3݅ − 3, 1 ≤ ݅ ≤ ݊ − (ଵݑ)݂ ,1 = 6݊ − ଵᇱݑ)݂ ,5 ) = 6݊ − (ଵᇱᇱݑ)݂ ,4 =
6݊ − (ݔ)݂ ,3 = 6݊ + 6݅ − 8, 1 ≤ ݅ ≤ ିଵ

ଶ
(ᇱݔ)݂ , = 6݊ + 6݅ − 7, 1 ≤ ݅ ≤ ିଵ

ଶ
, 

(ᇱᇱݔ)݂ = 6݊ + 6݅ − 6, 1 ≤ ݅ ≤ ିଵ
ଶ

(ݕ)݂ , = 6݊ + 6݅ − 5, 1 ≤ ݅ ≤ ିଵ
ଶ

(ᇱݕ)݂ , =

6݊ + 6݅ − 4, 1 ≤ ݅ ≤ ିଵ
ଶ

(ᇱᇱݕ)݂ , = 6݊ + 6݅ − 3, 1 ≤ ݅ ≤ ିଵ
ଶ

. Since ݁(1) =
݁(0) = 5݊ − 4, ݂ is a difference cordial labeling of ܣܦ(ܳ)⊙  ∎   .ଵܭ2

 
Theorem 2.7: ܣܦ(ܳ)⊙ܭଶ is difference cordial. 
 
Proof: Case (i): The two squares starts from ݑଵ and ends with ݑ.  
Let ܸ(ܣܦ(ܳ)⊙ܭଶ) = ܸ൫ܣܦ(ܳ)൯ ∪ ቄݒᇱ ᇱᇱݒ, ᇱᇱݓ,ᇱݓ, ,ᇱݔ, ,ᇱݕ,ᇱᇱݔ :ᇱᇱݕ 1 ≤ ݅ ≤ 

ଶ
ቅ 

∪ ,ᇱݑ} :ᇱᇱݑ 1 ≤ ݅ ≤ ݊} and (ܣܦ(ܳ)⊙ܭଶ) ∪ ൯(ܳ)ܣܦ൫ܧ ∪ :ᇱᇱݑᇱݑ,ᇱᇱݑݑ,ᇱݑݑ} 1 ≤
݅ ≤ ݊} ∪ ቄݒݒᇱ ᇱᇱݒݒ, , ᇱᇱݒᇱݒ ᇱᇱݓᇱݓ,ᇱᇱݓݓ,ᇱݓݓ, ,ᇱݔݔ, ,ᇱᇱݔݔ ,ᇱݕݕ,ᇱᇱݔᇱݔ ,ᇱᇱݕݕ :ᇱᇱݕᇱݕ 1 ≤
݅ ≤ 

ଶൟ. Define a map ݂:ܸ(ܣܦ(ܳ)⊙ܭଶ) → {1, 2 … 9݊} by ݂(ݑଶିଵ) = 6݅ − 3, 1 ≤
݅ ≤ 

ଶ
ଶିଵᇱݑ)݂ , ) = 6݅ − 4, 1 ≤ ݅ ≤ 

ଶ
, ଶିଵᇱᇱݑ)݂ ) = 6݅ − 5, 1 ≤ ݅ ≤ 

ଶ
, (ଶݑ)݂ = 6݅ −
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2, 1 ≤ ݅ ≤ 
ଶ
ଶᇱݑ)݂ , ) = 6݅, 1 ≤ ݅ ≤ 

ଶ
, ଶᇱᇱݑ)݂ ) = 6݅ − 1, 1 ≤ ݅ ≤ 

ଶ
(ݒ)݂, = 3݊ + 6݅ −

5, 1 ≤ ݅ ≤ 
ଶ
(ᇱݒ)݂ , = 3݊ + 6݅ − 4, 1 ≤ ݅ ≤ 

ଶ
, (ᇱᇱݒ)݂ = 3݊ + 6݅ − 3, 1 ≤ ݅ ≤ 

ଶ
, 

(ݓ)݂ = 3݊ + 6݅ − 2, 1 ≤ ݅ ≤ 
ଶ
(ᇱݓ)݂ , = 3݊ + 6݅ − 1, 1 ≤ ݅ ≤ 

ଶ
, (ᇱᇱݓ)݂ = 3݊ +

6݅, 1 ≤ ݅ ≤ 
ଶ
(ݔ)݂ , = 6݊ + 6݅ − 5, 1 ≤ ݅ ≤ 

ଶ
(ᇱݔ)݂ , = 6݊ + 6݅ − 4, 1 ≤ ݅ ≤


ଶ

, (ᇱᇱݔ)݂ = 6݊ + 6݅ − 3, 1 ≤ ݅ ≤ 
ଶ
(ݕ)݂ , = 6݊ + 6݅ − 2, 1 ≤ ݅ ≤ 

ଶ
(ᇱݕ)݂ , = 6݊ +

6݅ − 1, 1 ≤ ݅ ≤ 
ଶ

, (ᇱᇱݕ)݂ = 6݊ + 6݅, 1 ≤ ݅ ≤ 
ଶ
. Since ݁(1) = ଵଷ

ଶ
 and ݁(0) =

ଵଷିଶ
ଶ

, ݂ is a difference cordial labeling of ܣܦ(ܳ)⊙ܭଶ.  
 
Case (ii): The two squares starts from ݑଶ and ends with ݑିଵ.  
Define a map ݂:ܸ(ܣܦ(ܳ)⊙ܭଶ) → {1, 2 … 9݊ − 12} by ݂(ݑ) = 3݊ + 3݅ − 8, 1 ≤
݅ ≤ (ᇱݑ)݂ ,݊ = 3݊ + 3݅ − 7, 1 ≤ ݅ ≤ (ᇱᇱݑ)݂ ,݊ = 3݊ + 3݅ − 6, 1 ≤ ݅ ≤ (ݒ)݂ ,݊ =
6݅ − 3, 1 ≤ ݅ ≤ ିଶ

ଶ
(ᇱݒ)݂ , = 6݅ − 4, 1 ≤ ݅ ≤ ିଶ

ଶ
(ᇱᇱݒ)݂ , = 6݅ − 5, 1 ≤ ݅ ≤ ିଶ

ଶ
, 

(ݓ)݂ = 6݅ − 2, 1 ≤ ݅ ≤ ିଶ
ଶ

(ᇱݓ)݂ , = 6݅, 1 ≤ ݅ ≤ ିଶ
ଶ

(ᇱᇱݓ)݂ , = 6݅ − 1, 1 ≤ ݅ ≤
ିଶ
ଶ

(ݔ)݂ , = 6݊ + 6݅ − 11, 1 ≤ ݅ ≤ ିଶ
ଶ

(ᇱݔ)݂ , = 6݊ + 6݅ − 10, 1 ≤ ݅ ≤ ିଶ
ଶ

, 

(ᇱᇱݔ)݂ = 6݊ + 6݅ − 9, 1 ≤ ݅ ≤ ିଶ
ଶ

(ݕ)݂ , = 6݊ + 6݅ − 8, 1 ≤ ݅ ≤ ିଶ
ଶ

(ᇱݕ)݂ , =

6݊ + 6݅ − 7, 1 ≤ ݅ ≤ ିଶ
ଶ

(ᇱᇱݕ)݂ , = 6݊ + 6݅ − 6, 1 ≤ ݅ ≤ ିଶ
ଶ

. Since ݁(1) = ଵଷିଵ଼
ଶ

 

and ݁(0) = ଵଷିଶ
ଶ

, ݂ is a difference cordial labeling of ܣܦ(ܳ)⊙ܭଶ.  
 
Case (iii): The two squares starts from ݑଶ and ends with ݑ.  
Label the vertices ݒ, ᇱݒ ᇱᇱݒ, ݓ, ᇱᇱݓ,ᇱݓ,  ቀ1 ≤ ݅ ≤ ିଵ

ଶ
ቁ as in case (ii) and define 

(ݑ)݂ = 3݊ + 3݅ − 5, 1 ≤ ݅ ≤ (ᇱݑ)݂ ,݊ = 3݊ + 3݅ − 4, 1 ≤ ݅ ≤ (ᇱᇱݑ)݂ ,݊ = 3݊ +
3݅ − 3, 1 ≤ ݅ ≤ (ݔ)݂ ,݊ = 6݊ + 6݅ − 8, 1 ≤ ݅ ≤ ିଵ

ଶ
(ᇱݔ)݂ , = 6݊ + 6݅ − 7, 1 ≤ ݅ ≤

ିଵ
ଶ

(ᇱᇱݔ)݂ , = 6݊ + 6݅ − 6, 1 ≤ ݅ ≤ ିଵ
ଶ

(ݕ)݂ , = 6݊ + 6݅ − 5, 1 ≤ ݅ ≤ ିଵ
ଶ

(ᇱݕ)݂ , =

6݊ + 6݅ − 4, 1 ≤ ݅ ≤ ିଵ
ଶ

(ᇱᇱݕ)݂ , = 6݊ + 6݅ − 3, 1 ≤ ݅ ≤ ିଵ
ଶ

. Since ݁(1) = ଵଷିଽ
ଶ

 

and ݁(0) = ଵଷିଵଵ
ଶ

, ݂ is a difference cordial labeling of ܣܦ(ܳ)⊙ܭଶ.   ∎ 
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