Difference Cordial Labeling of Graphs

R. Ponraj¹, S. Sathish Narayanan² and R. Kala³

¹Department of Mathematics, Sri Paramakalyani College, Alwarkurichi-627412, India. Email: ponrajmaths@gmail.com ²Department of Mathematics, Thiruvalluvar College, Papanasam-627425, India. Email: sathishrvss@gmail.com ³Department of Mathematics, Manonmaniam Sundaranar University, Tirunelveli-627012, India. Email: karthipyi91@yahoo.co.in

Abstract

In this paper, we introduce a new notion called difference cordial labeling. Let G be a (p,q) graph. Let $f:V(G) \rightarrow \{1, 2, ..., p\}$ be a function. For each edge uv, assign the label |f(u) - f(v)|. f is called a difference cordial labeling if f is a one to one map and $|e_f(0) - e_f(1)| \leq 1$ where $e_f(1)$ and $e_f(0)$ denote the number of edges labeled with 1 and not labeled with 1 respectively. A graph with a difference cordial labeling is called a difference cordial graph.

Keywords: Path, Cycle, Complete graph, Complete bipartite graph, Star, Helm.

Introduction

We consider finite, undirected and simple graphs only. Let G = (V, E) be (p, q) graph. The cardinality of the vertex set and edge set respectively is called the order and size of a graph. Cahit introduced the concept of cordial labeling in the year 1987 in [1]. Let f be a function from V(G) to $\{0, 1\}$ and for each edge xy, assign the label |f(x) - f(y)|. f is called a cordial labeling if the number of vertices labeled with 0 and the number of vertices labeled with 1 differ by at most 1 and the number of edges labeled with 1 differ by at most 1. k-Product cordial labeling [4] has been introduced by R. Ponraj, M. Sivakumar and M. Sundaram. Motivated by these works we define here a new notion called difference

cordial labeling of a graph. Terms and definitions not defined here are used in the sense of Harary [3].

Difference Cordial Labeling Definition 2.1:

Let G be a (p,q) graph. Let f be a map from V (G) to $\{1, 2, ..., p\}$. For each edge uv, assign the label |f(u) - f(v)|. f is called difference cordial labeling if f is 1 - 1 and $|e_f(0) - e_f(1)| \le 1$ where $e_f(1)$ and $e_f(0)$ denote the number of edges labeled with 1 and not labeled with 1 respectively. A graph with a difference cordial labeling is called a difference cordial graph.

Example: The following is a simple example of a difference cordial graph

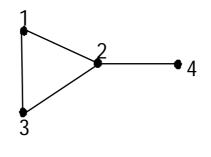


Figure (i)

Theorem 2.2: Every graph is a subgraph of a connected difference cordial graph.

Proof: Let G be a given (p, q) graph. Let $N = \frac{p(p-1)}{2} - 2p + 2$. Consider the complete graph K_p and the cycle C_N . Let $V(K_p) = \{u_1, u_2, \dots, u_p\}$ and C_N be the cycle $v_1v_2 \dots v_Nv_1$. We construct the super graph G^* of G as follows: Let $V(G^*) = V(K_p) \cup V(C_N)$ and $E(G^*) = E(K_p) \cup E(C_N) \cup \{u_pv_1\}$. Clearly G is a sub graph of G^* . Assign the label *i* to u_i $(1 \le i \le p)$ and p + j to v_j $(1 \le j \le N)$. Therefore, $e_f(0) = N + p$ and $e_f(1) = N + p - 1$. Hence G^* is a difference cordial graph.

Theorem 2.3: If G is a (p, q) difference cordial graph, then $q \le 2p - 1$.

Proof: Let f be a difference cordial labeling of G. Obviously, $e_f(1) \le p - 1$. This implies $e_f(0) \ge q - p + 1 \rightarrow .$ (1)

Case (i) : $e_f(0) = e_f(1) + 1$. From (1), $q \le e_f(0) + p - 1 = e_f(1) + 1 + p - 1 \le 2p - 1$. Therefore, $q \le 2p - 1 \rightarrow (2)$.

Case (ii): $e_f(1) = e_f(0) + 1$. From (1), $q \le e_f(0) + p - 1 \le e_f(0) + p - 1 \le 2p - 2$. Therefore, $q \le 2p - 2 \rightarrow (3)$.

Case (ii): $e_f(1) = e_f(0) + 1$. From (1), $q \le e_f(0) + p - 1 = e_f(1) - 1 + p - 1 \le 2p - 3$. Therefore, $q \le 2p - 3 \rightarrow (4)$. From (2), (3) and (4), $q \le 2p - 1$.

Theorem 2.4: If G is a r-regular graph with $r \ge 4$ then G is not difference cordial.

Proof: Let G be a (p, q) graph. Suppose G is difference cordial. Then by theorem 2.3, $q \le 2p - 1$. This implies $q \le \frac{4q}{r} - 1$. Hence $q \le q - 1$. This is impossible.

Theorem 2.5: Any Path is a difference cordial graph.

Proof: Let P_n be the path $u_1u_2 \dots u_n$. The following table (i) gives the difference cordial labeling of P_n , $n \le 8$.

е	u_1	u_2	u_3	u_4	u_5	u_6	u_7	u_8
1	1							
2	1	2						
3	1	3	2					
4	1	2	4	3				
5	1	2	4	3	5			
6	1	2	3	5	4	6		
7	1	2	3	5	7	6	4	
8	1	2	3	4	6	8	7	5

Table (i)

Assume n > 8. Define a map $f: V(P_n) \rightarrow \{1, 2, ..., n\}$ as follows:

Case (i) : $n \equiv 0 \pmod{4}$. Define

$$f(u_i) = i \ 1 \le i \le \frac{n+2}{2}$$
$$f\left(u_{\frac{n+2}{2}+i}\right) = \frac{n+2}{2} + 2i \ 1 \le i \le \frac{n}{4} - 1$$

$$f\left(u_{\frac{3n}{4}+i}\right) = \frac{n+2}{2} + 2i - 1 \ 1 \le i \le \frac{n}{4}$$

Case (ii): $n \equiv 1 \pmod{4}$. Define

$$f(u_i) = i \ 1 \le i \le \frac{n+1}{2}$$

$$f\left(u_{\frac{n+1}{2}+i}\right) = \frac{n+1}{2} + 2i \ 1 \le i \le \frac{n-1}{4}$$

$$f\left(u_{\frac{3n+1}{4}+i}\right) = \frac{n+1}{2} + 2i - 1 \ 1 \le i \le \frac{n-1}{4}$$

Case (iii): $n \equiv 2 \pmod{4}$.

Define

$$f(u_i) = i \ 1 \le i \le \frac{n+2}{2}$$

$$f\left(u_{\frac{n+2}{2}+i}\right) = \frac{n+2}{2} + 2i \ 1 \le i \le \frac{n-2}{4}$$

$$f\left(u_{\frac{3n+2}{4}+i}\right) = \frac{n+2}{2} + 2i - 1 \ 1 \le i \le \frac{n-2}{4}$$

Case (iv) : $n \equiv 3 \pmod{4}$.

Define

$$f(u_i) = i \ 1 \le i \le \frac{n+1}{2}$$

$$f\left(u_{\frac{n+1}{2}+i}\right) = \frac{n+1}{2} + 2i \ 1 \le i \le \frac{n+1}{4} - 1$$

$$f\left(u_{\frac{3n-1}{4}+i}\right) = \frac{n+1}{2} + 2i - 1 \ 1 \le i \le \frac{n+1}{4}$$

The following table (ii) proves that f is a difference cordial labeling.

Table (ii)

Nature of <i>n</i>	$e_{f}(0)$	<i>e</i> _{<i>f</i>} (1)
$n \equiv 0 \pmod{2}$	$\frac{n-2}{2}$	$\frac{n}{2}$
$n \equiv 1 \pmod{2}$	<u>n – 1</u>	<u>n – 1</u>
	2	2

Corollary 2.6: Any Cycle is a difference cordial graph.

188

Proof: The function f in theorem 2.5 is also a difference cordial labeling of the cycle $C_n: u_1u_2 \dots u_nu_1$.

Theorem 2.7: The Star $K_{1,n}$ is difference cordial iff $n \le 5$.

Proof: Let $V(K_{1,n}) = \{u, u_i: 1 \le i \le n\}$, $E(K_{1,n}) = \{uu_i: 1 \le i \le n\}$. Table (iii) shows that the star $K_{1,n}$, $n \le 5$ is difference cordial.

п	и	u_1	u_2	u_3	u_4	u_5
1	1	2				
2	1	2	3			
3	1	2	3	4		
4	2	1	3	4	5	
5	2	1	3	4	5	6

Table (iii)

Assume n > 5. Suppose f is a difference cordial labeling of $K_{1,n}$, n > 5. Without loss of generality assume that f(u) = x. To get the edge label 1, the only possibility is that $f(u_i) = x - 1$, $f(u_j) = x + 1$ for some i, j. This implies $e_f(1) \le 2$. $e_f(0) - e_f(1) \ge n - 2 - 2 > 1$, a contradiction.

Theorem 2.8: K_n is difference cordial iff $n \le 4$.

Proof: Suppose K_n is difference cordial. Then $\frac{n(n-1)}{2} \le 2n - 1$. This implies $n \le 4$. K_1, K_2 are difference cordial by theorem 2.5. Using corollary 2.6, K_3 is difference cordial. A difference cordial labeling of K_4 is given in figure (ii).

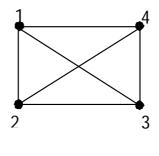


Figure (ii)

Now we look into the complete bipartite graph $K_{m,n}$.

Theorem 2.9: If $m \ge 4$ and $n \ge 4$, then $K_{m,n}$ is not difference cordial.

Proof: Suppose $K_{m,n}$ is difference cordial. By theorem 2.3, $mn \le 2(m+n) - 1$. This implies $mn - 2m - 2n + 1 \le 0$, a contradiction to $m \ge 4$ and $n \ge 4$.

Theorem 2.10: $K_{2,n}$ is difference cordial iff $n \leq 4$.

Proof: Let $V(K_{2,n}) = V_1 \cup V_2$ where $V_1 = \{u_1, u_2\}$ and $V_2 = \{v_i: 1 \le i \le n\}$. $K_{1,2}, K_{2,2}$ are difference cordial by theorem 2.5 and corollary 2.6 respectively. A difference cordial labeling of $K_{2,3}$ and $K_{2,4}$ are given in figure (iii).

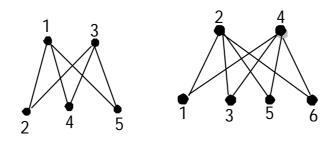


Figure (iii)

Now, we assume $n \ge 5$. Suppose f is a difference cordial labeling. Let $f(u_1) = r_1, f(u_2) = r_2$. Then $K_{2,n}$ has at most 4 edges with label 1. The maximum value is attained if the vertices in the set V_2 receive the labels $r_1 - 1, r_1 + 1, r_2 - 1, r_2 + 1$. Therefore $e_f(1) \le 4, e_f(0) \ge 2n - 4$. Hence $e_f(0) - e_f(1) \ge 2n - 8 > 2$, a contradiction.

Theorem 2.11: $K_{3,n}$ is difference cordial iff $n \le 4$.

Proof: $K_{3,1}$, $K_{3,2}$ are difference cordial graphs by theorem 2.7 and 2.10. A difference cordial labeling of $K_{3,3}$, $K_{3,4}$ are given in figure (iv)

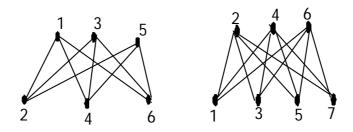


Figure (iv)

For any injective map f on $V(K_{3,5})$, $e_f(1) \le 6$. Therefore, $K_{3,5}$ is not difference cordial. Assume $n \ge 6$. Suppose $K_{3,n}$ is difference cordial, then by theorem 2.3, $3n \le 2(n+3) - 1$, a contradiction.

Now we investigate the difference cordial labeling behavior of bistar $B_{m,n}$.

Theorem 2.12: If $m + n \ge 9$ then $B_{m,n}$ is not difference cordial.

Proof: Let $V(B_{m,n}) = \{u, v, u_i, v_j : 1 \le i \le m, 1 \le j \le n\}$ and $E(B_{m,n}) = \{uu_i, vv_j, uv : 1 \le i \le m, 1 \le j \le n\}$. Assume f(u) = x and f(v) = y.

Case (i) : $y \neq x - 1$ and $y \neq x + 1$.

To get the edge label 1, u_i and u_j must receive the labels x - 1, x + 1 respectively for some i, j and v_i, v_j must receive the labels y - 1, y + 1 respectively for some i, j. Hence $e_f(1) \le 4$.

Case (ii) : y = x - 1 or x + 1.

Obviously, in this case $e_f(1) \le 3$. Thus by case (i), (ii), $e_f(1) \le 4$. Therefore, $e_f(0) \ge q - 4 \ge m + n - 3$. Then $e_f(0) - e_f(1) \ge m + n - 3 - 4 \ge 2$, a contradiction.

Theorem 2.13: $B_{1,n}$ is difference cordial iff $n \leq 5$.

Proof: Let $V(B_{1,n}) = \{u, v, u_1, v_i : 1 \le i \le n\}$ and $E(B_{1,n}) = \{uu_1, vv_i, uv : 1 \le i \le n\}$.

Case (i) : $n \le 5$. $B_{1,1}$ is difference cordial by theorem 2.4. A difference cordial labeling of $B_{1,2}$ is in figure (v)

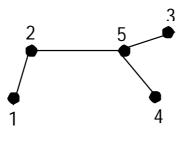


Figure (v)

For $3 \le n \le 5$, define f(u) = 2, f(v) = 4, $f(u_1) = 1$, $f(v_1) = 3$, $f(v_i) = 3 + i$, $2 \le i \le n$. Clearly this f is a difference cordial labeling.

Case (ii) : n > 5.

When $n \ge 8$, the result follows from theorem 2.12. When n = 6 or 7, $e_f(1) \le 3$. Therefore, $e_f(0) \ge 5 \text{ or } 6$ according as n = 6 or 7. This is a contradiction.

Theorem 2.14: $B_{2,n}$ is difference cordial iff $n \leq 6$.

Proof: Let $V(B_{2,n}) = \{u_i, v_i, u_{1,i}, u_{2,i}, v_i : 1 \le i \le n\}$ and $E(B_{m,n}) = \{uu_{1,i}, uu_{2,i}, vv_{i,i}, uv : 1 \le i \le n\}.$

Case (i): n = 2, 3. When n = 2, define $f(u) = 4, f(v) = 2, f(u_1) = 6, f(u_2) = 5, f(v_1) = 1, f(v_2) = 3$. When n = 3, define $f(u) = 5, f(v) = 2, f(u_1) = 6, f(u_2) = 7, f(v_1) = 1, f(v_2) = 3, f(v_3) = 4$. Clearly, f is a difference cordial labeling.

Case (ii): n = 4, 5, 6. Define $f(v) = 2, f(v_1) = 1, f(v_i) = 1 + i, 2 \le i \le n, f(u_1) = n + 2, f(u) = n + 3, f(u_2) = n + 4$. In this case, $e_f(0) = n - 1$ and $e_f(1) = 4$. Therefore, f is a difference cordial labeling.

Case (iii) : $n \ge 7$. Proof follows from theorem 2.12.

Theorem 2.15: $B_{3,n}$ is difference cordial iff $n \leq 5$.

Proof: Let $V(B_{3,n}) = \{u, v, u_i, v_j : 1 \le i \le 3, 1 \le j \le n\}$ and $E(B_{m,n}) = \{uu_i, vv_j, uv : 1 \le i \le 3, 1 \le j \le n\}$. $B_{3,1}, B_{3,2}$ are difference cordial by theorems 2.13 and 2.14 respectively. For $3 \le n \le 5$, define $f(v) = 2, f(v_1) = 1, f(v_i) = 1 + i, 2 \le i \le n, f(u_1) = n + 2, f(u) = n + 3, f(u_2) = n + 4, f(u_3) = n + 5$. In this case, $e_f(0) = n$ and $e_f(1) = 4$. Therefore, f is a difference cordial labeling. For $n \ge 6$, the result follows from theorem 2.12.

Remark 2.16: $B_{4,4}$ is difference cordial.

Theorem 2.17: The wheel W_n is difference cordial.

Proof: Let $W_n = C_n + K_1$ where C_n is the cycle $u_1 u_2 \dots u_n u_1$ and $V(K_1) = \{u\}$. Define a map $f: V(W_n) \to \{1, 2, \dots, n+1\}$ by $f(u) = 1, f(v_i) = i + 1, 1 \le i \le n$. Then $e_f(0) = n, e_f(1) = n$.

Corollary 2.18: The fan F_n is difference cordial for all n.

Proof: Let $F_n = P_n + K_1$ where P_n is the path $u_1 u_2 \dots u_n$ and $V(K_1) = \{u\}$. The function f given in theorem 2.17 is also a difference cordial labeling since $e_f(0) =$

 $n-1, e_f(1) = n.$

The gear graph G_n is obtained from the wheel W_n by adding a vertex between every pair of adjacent vertices of the cycle C_n .

Theorem 2.19: The gear graph G_n is difference cordial.

Proof: Let the vertex set and edge set of the wheel W_n be defined as in theorem 2.17. Let $V(G_n) = V(W_n) \cup \{v_i : 1 \le i \le n\}$ and $E(G_n) = E(W_n) \cup \{u_i v_i, v_j u_{j+1} : 1 \le i \le n, 1 \le j \le n\} - E(C_n)$. Define $f: V(G_n) \to \{1, 2 ... 2n + 1\}$ as follows:

Case (i) : n is even.

$$f(u_i) = 2i - 1 \ 1 \le i \le \frac{3n+2}{4} \ if \ n \equiv 2 \pmod{4}$$

$$1 \le i \le \frac{3n}{4} \ if \ n \equiv 0 \pmod{4}$$

$$f(u_{n-i+1}) = \frac{3n}{2} + 3 + i \ 1 \le i \le \frac{n-2}{4} \ if \ n \equiv 2 \pmod{4}$$

$$1 \le i \le \frac{n}{4} \ if \ n \equiv 0 \pmod{4}$$

$$f(v_i) = 2i \ 1 \le i \le \frac{3n-2}{4} \ if \ n \equiv 2 \pmod{4}$$

$$1 \le i \le \frac{3n-4}{4} \ if \ n \equiv 0 \pmod{4}$$

$$f(v_{n-i+1}) = \frac{3n}{2} + i \ 1 \le i \le \frac{n+2}{4} \ if \ n \equiv 2 \pmod{4}$$

$$1 \le i \le \frac{n+4}{4} \ if \ n \equiv 0 \pmod{4}$$

Case (ii) : n is odd.

$$\begin{aligned} f(u_i) &= 2i - 1 \ 1 \le i \le \frac{3n+1}{4} \ if \ n \equiv 1 \ (mod \ 4) \\ 1 \le i \le \frac{3n+3}{4} \ if \ n \equiv 3 \ (mod \ 4) \\ f(u_{n-i+1}) &= \begin{cases} \frac{3n-1}{2} + 3 + i \ 1 \le i \le \frac{n-1}{4} \ if \ n \equiv 1 \ (mod \ 4) \\ \frac{3n+1}{2} + 3 + i \ 1 \le i \le \frac{n-3}{4} \ if \ n \equiv 1 \ (mod \ 4) \end{cases} \\ f(v_i) &= 2i \ 1 \le i \le \frac{3n+1}{4} \ if \ n \equiv 1 \ (mod \ 4) \\ 1 \le i \le \frac{3n-1}{4} \ if \ n \equiv 3 \ (mod \ 4) \\ f(v_{n-i+1}) &= \frac{3n+3}{2} + i - 1 \ 1 \le i \le \frac{n-1}{4} \ if \ n \equiv 2 \ (mod \ 4) \\ 1 \le i \le \frac{n+1}{4} \ if \ n \equiv 0 \ (mod \ 4) \end{aligned}$$

Finally we define f(u) = 2n + 1. Table (iv) establishes that f is a difference cordial labeling.

	/•	`
ah	113	71
Tabl	(1)	"

Values of n	$e_{f}(0)$	<i>e</i> _{<i>f</i>} (1)
$n \equiv 0 \pmod{2}$	$\frac{3n}{2}$	$\frac{3n}{2}$
$n \equiv 1 \pmod{2}$	3n - 1	3n + 1
	2	2

We now look into helms and webs. The helm H_n is obtained from a wheel W_n by attaching a pendent edge at each vertex of the cycle C_n . Koh et al. [2] define a web graph. A web graph is obtained by joining the pendent points of the helm to form a cycle and then adding a single pendent edge to each vertex of this outer cycle. Yang [2] has extended the notion of a web by iterating the process of adding pendent vertices and joining them to form a cycle and then adding pendent to the new cycle. W(t,n) is the generalized web with t cycles C_n . Note that W(1,n) is the helm and W(2,n) is the web.

Theorem 2.20: All webs are difference cordial.

Proof: Let
$$C_n^{(i)}$$
 be the cycle $u_1^i u_2^i \dots u_n^i u_1^i$. Let
 $V(W(t, n)) = \bigcup_{i=1}^t V(C_n^{(i)}) \cup \{u\} \cup \{v_i : 1 \le i \le n\}$
And

$$E(W(t,n)) = \bigcup_{i=1}^{i=1} E(C_n^{(i)}) \cup \{uu_j^1 : 1 \le j \le n\} \cup \{u_j^n v_j : 1 \le j \le n\}$$
$$\cup \{u_j^i u_j^{i+1} : 1 \le j \le n, 1 \le i \le t-1\}.$$

Define a map
$$f: V(W(t,n)) \rightarrow \{1, 2..., nt + n + 1\}$$
 as follows:
 $f(u_{2i-1}^t) = 4i - 2 \ 1 \le i \le \frac{n}{2}$ if n is even
 $1 \le i \le \frac{n+1}{2}$ if n is odd
 $f(u_{2i}^t) = 4i - 1 \ 1 \le i \le \frac{n}{2}$ if n is even
 $1 \le i \le \frac{n-1}{2}$ if n is odd
 $f(v_{2i-1}^t) = 4i - 3 \ 1 \le i \le \frac{n}{2}$ if n is even
 $1 \le i \le \frac{n+1}{2}$ if n is odd
 $f(v_{2i}^t) = 4i \ 1 \le i \le \frac{n}{2}$ if n is even
 $1 \le i \le \frac{n-1}{2}$ if n is odd
 $f(u_{2i}^t) = 4i \ 1 \le i \le \frac{n}{2}$ if n is even
 $1 \le i \le \frac{n-1}{2}$ if n is odd
 $f(u_{i}^{t-j}) = (j + 1) + t + i \ 1 \le j \le t - 1, 1 \le i \le n - t.$

 $f(u_{n-i}^{t-j}) = (j+1)n + j - i \ 1 \le j \le t - 1, 0 \le i \le j - 1.$ f(u) = nt + n + 1. From the following table (v), f yields a difference cordial labeling of the webs W(t, n)

Nature of <i>n</i>	$e_f(0)$	<i>e_f</i> (1)
$n \equiv 0 \pmod{2}$	n(2t + 1)	n(2t + 1)
	2	2
$n \equiv 1 \pmod{2}$	n(2t+1) - 1	n(2t+1) + 1
	2	2

Table	(v)
-------	------------

A web graph W(3, 5) with a difference cordial labeling is given in figure (vi)

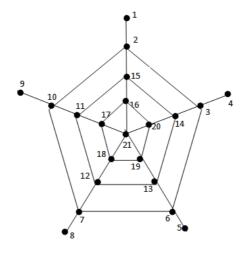


Figure (vi)

Corollary 2.21: The helm H_n is difference cordial for all n.

Proof: Since $H_n \cong W(1, n)$, the proof follows from theorem 2.20.

References

- [1] I. Cahit, Cordial graphs: a weaker version of graceful and harmonious graphs, Ars combinatoria 23 (1987), 201-207.
- [2] J. A. Gallian, A Dynamic survey of graph labeling, the electronic journal of combinatorics 18 (2013) # Ds6.

- [3] F. Harary, Graph theory, Addision wesley, New Delhi (1969).
- [4] R. Ponraj, M. Sivakumar and M. Sundaram, k Product cordial labeling of graphs, Int. J. Contemp. Math. Sciences, Vol. 7, 2012, no. 15, 733-742.