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ABSTRACT: 
 

In this paper, we have discussed some Pell and Pell-Lucas identities with 
proofs of some identities using their Binet form. These properties can be used 
to derive generating functions, polynomials, divisibility properties, matrices, 
determinants and so many other applications of Pell and Pell-Lucas 
Sequences. 
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1. INTRODUCTION: 
Define the sequences {Un} and {Vn} for all integers n by  
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 For p = 1, we write {Un} = {Fn} and {Vn} = {Ln}, which are the Fibonacci and 
Lucas numbers respectively. Their Binet forms, obtained by using standard techniques 
for solving linear recurrences, are  
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where α and β are the roots of  x2 – x – 1 = 0. 
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 For p = 2, we write       

(1.2) 
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 Here {Pn} and {Qn} are the Pell and Pell-Lucas Sequences respectively. Their 
Binet forms are given by 

(1.3) 
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where γ and δ are the roots of  x2 – 2x – 1 = 0 i.e. 21  and 21 , 

(1.4) .1,1,1





 



  

 
 
2. IDENTITIES: 
The Pell and Pell-Lucas identities are given below. For brevity we have given proof to 
some identities only and others can be proved in similar ways using Binet forms i.e. 
(1.3). 
 11   nnn PPQ      (2.1)  
 
Proof: By (1.3), we can write  
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 By (1.4) 
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 = nn    = nQ  By (1.3) 
 
  12  nnn PPQ      (2.2) 
 
Proof: By (2.1) and (1.2), result is obvious. 
 222   nnn PPQ  
 
Proof: Using (2.2) and (1.2), result can easily be proved. 
 nnn PQQ 811    
 
Proof: Using (2.1) and (1.2), result can easily be proved. 
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 1 nn
n PP     (2.3) 

 
Proof: This result can be proved using Principle of Mathematical Induction. 
Let the result be true for positive integers less than or equal to k i.e. 
 1 kk
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 = kk PP 1                                                                                    By (1.2) 
 
 So the result is true for k+1also, hence by strong version of Principle of 
Mathematical Induction result is proved. 
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Proof: Similar to the proof of identity (v), one can prove it. 
 nnn QPP 2      (2.6) 
 
Proof: By (1.3), we can write 
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Proof: Using (2.6), we can write 
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 Continuing like this, we get 
 124222
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       (2.7) 
 
Proof: By (1.3), we can write  
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Proof: Similar to the proof of identity (ix), one can prove it. 
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Proof: Similar to the proof of identity (xi), one can prove it. 
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Proof:  
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 (Using sum of a G.P.) 
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Proof: Letting j = 0, in identity (xiii), we get the result. 
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Proof: Letting k = 1, in identity (xiii), we get the result. 
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Proof: Since  
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Proof: Similar to the proof of identity (xvi) using (2.5), one can prove it. 
 nmmnnm PQPQP  2  
 

Proof: Since  
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 Similar to the proof of identity (xviii) using (1.3), we can prove the following 
identities: 
 mnmmnmn PQPQQ   11  
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 Now, identities involving squares of Pn and Qn are given below: 
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Proof: Using (1.3) and (1.4), we can write 
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 Similar to the proof of identity (xlii) using (1.3) and (1.4), we can prove the 
following identities: 
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 Other identities, which can also be proved using Binet form for Pell and Pell-
Lucas numbers are given below: 
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