On Contra #*rg*-Continuous Functions in Topological Spaces

R. Ramesh

Department of Mathematics, Pope John Paul II College of Education, Reddiar Palayam, Puducherry-605010. E-mail: rameshroshitha@gmail.com

A. Vadivel

Department of Mathematics (FEAT), Annamalai University, Annamalainagar, Tamil Nadu-608 002. E-mail: avmaths@gmail.com

D. Sivakumar

Department of Mathematics (DDE), Annamalai University, Annamalainagar-608 002 E-mail: sivakumardmaths@yahoo.com

Abstract

The purpose of this paper is to introduce the notion of contra #rg-continuous functions and to obtain fundamental properties of contra #rg-continuous functions. Also, we discuss the relationships between contra #rg-continuity and other related functions.

AMS subject classification: 54C10, 54C08, 54C05. Keywords: Contra #rg-continuous functions, locally #rg-indiscrete, #rg- T_1 , #rg- T_2 .

1. Introduction

Dontchev [2] introduced the notions of contra-continuity and strong S-closedness in topological spaces. He defined a function $f : X \rightarrow Y$ to be contra-continuous if the preimage of every open set of Y is closed in X. In [2], he obtained very intersting and important results concerning contra-continuity, compactness, S-closedness and strong S-closedness. Recently a new weaker form of this class of functions called contra-semicontinuous functions is introduced and investigated by Dontchev and Noiri [3]. They also introduced the notion of RC-continuity [3] between topological spaces which is weaker than contra-continuity and stronger than B-continuity [13]. In 1999, Jafari [4] introduced and investigated a new class of functions and contra-continuous functions. The concepts of RC-continuous functions and contra-continuous functions. The concepts of #rg-closed sets is introduced and its properties are studied by S. Syed et al. [10] in 2011 for general topological spaces. In this paper we present a new generalization of contra continuity called contra #rg-continuity which is weaker than contra-continuous function. We define this class of functions by the requirement that the inverse image of each open set in the codomain is #rg-closed in the domain.

In the present paper, spaces X and Y always mean topological spaces on which no separation axioms are assumed unless explicity stated. For a subset A of a space X, cl(A) and int(A) represent the closure of A and the interior of A, respectively. A subset A of a space X is said to be regular open (respectively regular closed) if A = int(cl(A)) (respectively A = cl(int(A))) [8]. A subset A is said to be semi-open [5] if $A \subset cl(int(A))$. A subset A of a space (X, T) is called *regular semi-open* [1] if there is a regular open set U such that $U \subset A \subset cl(U)$. The family of all regular semi-open sets of X is denoted by RSO(X). A subset A of a space X is said to be regular weakly closed (briefly, rw-closed) [14] (resp. #rg-closed [10]) if $cl(A) \subset U$ whenever $A \subset U$ and U is regular semi-open (resp. *rw-open*) in X. The complement of a *rw-closed* (resp. #*rg-closed*) A is *rw-open* (resp. #*rg-open*). The family of all #rg-open (resp. #rg-closed, closed) sets of X containing a point $x \in X$ is denoted by #RGO(X, x) (resp. #RGC(X, x), C(X, x)). The family of all #rg-open (resp. #rgclosed, closed, semi-open) sets of X is denoted by #RGO(X) (resp. #RGC(X), C(X), SO(X)). Let X be a topological space and $S \subset X$. Then (i) the set $\cap \{A : S \subset A\}$ and $A \in \#RGC(X)$ is called #rg-closure of S and is denoted by #rg-cl(S), (ii) The set $\cup \{A : A \subset S \text{ and } A \in \#RGO(X)\}$ is called #rg-interior of S and is denoted by #rg-int(S) [10].

A subset A of X is #rg-closed in a space X if A = #rg-cl(A) [10]. Let A be a subset of a space (X, T). The set $\cap \{U : U \in T \text{ and } A \subset U\}$ is called *kernal of A* and is denoted by ker(A) [6].

A space X is said to be strongly S-closed [2] if every closed cover of X has a finite subcover. A subset A of a space X is said to be strongly S-closed if the subspace A is strongly S-closed. A space X is said to be strongly countably S-closed if every countable cover of X by closed sets has a finite subcover. A space X is said to be strongly S-lindelof if every closed cover of X has a countable subcover. A topological space X is said to be ultra normal [7] if each pair of nonempty disjoint closed sets can be separated by

disjoint clopen sets. a topological space X is said to be ultra Hausdorff [7] if for each pair of distinct points x and y in X there exist clopen sets A and B containing x and y, respectively such that $A \cap B = \phi$.

Definition 1.1. A function $f : X \to Y$ is said to be

- (1) *RC*-continuous [3] if $f^{-1}(V)$ is regular closed in X for each open set V of Y,
- (2) #rg-continuous [12] if $f^{-1}(V)$ is #rg-open in X for each open set V of Y.
- (3) #rg-open [12] if image of each #rg-open set is #rg-open.

Definition 1.2. [10] A space (X, T) is called $\#rg - T_{\frac{1}{2}}$ if every #rg-closed set is closed.

2. Contra *#rg*-continuous functions and its relationships with other functions

Definition 2.1. A function $f : X \to Y$ is called **contra** #rg-continuous if $f^{-1}(V)$ is #rg-closed set in X for every open set V of Y.

Theorem 2.2. The following are equivalent for a function $f : X \to Y$:

- (1) f is contra #rg-continuous,
- (2) the inverse image of every closed set of Y is #rg-open.

Proof. Let U be any closed set of Y. Since $Y \setminus U$ is open, then by (1) it follows that $f^{-1}(Y \setminus U) = X \setminus f^{-1}(U)$ is #rg-closed. This shows that, $f^{-1}(U)$ is #rg-open in X. Converse is similar.

Theorem 2.3. Suppose that #RGC(X) is closed under arbitrary intersections. Then the following are equivalent for a function $f : X \to Y$:

- (1) f is contra #rg-continuous,
- (2) the inverse image of every closed set of Y is #rg-open,
- (3) for each $x \in X$ and each closed set B in Y with $f(x) \in B$, there exists a #rg-open set A in X such that $x \in A$ and $f(A) \subset B$,
- (4) $f(\#rg\text{-}cl(A)) \subset ker(f(A))$ for every subset A of X,
- (5) $\#rg\text{-}cl(f^{-1}(B)) \subset f^{-1}(ker(B))$ for every subset B of Y.

Proof. (1) \Rightarrow (3) Let $x \in X$ and B be a closed set in Y with $f(x) \in B$. By (1), it follows that $f^{-1}(Y \setminus B) = X \setminus f^{-1}(B)$ is #rg-closed and so $f^{-1}(B)$ is #rg-open. Take $A = f^{-1}(B)$, we obtain $x \in A$ and $f(A) \subset B$.

(3) \Rightarrow (2) Let *B* be a closed set in *Y* with $x \in f^{-1}(B)$. Since $f(x) \in B$, by (3) there exists a #rg-open set *A* in *X* containing *x* such that $f(A) \subset B$. It follows that $x \in A \subset f^{-1}(B)$. Hence $f^{-1}(B)$ is #rg-open.

 $(2) \Rightarrow (1)$ Follows from the previous theorem.

(2) \Rightarrow (4) Let *A* be any subset of *X*. Let $y \notin kerf(A)$. Then there exists a closed set *F* containing *y* such that $f(A) \cap F = \phi$. Hence we have $A \cap f^{-1}(F) = \phi$. Hence, we obtain $f(\#rg\text{-}cl(A)) \cap F = \phi$ and $\#rg\text{-}clA \cap f^{-1}(F) = \phi$ and $y \notin f(\#rg\text{-}cl(A))$. Thus $f(\#rg\text{-}cl(A)) \subset ker(f(A))$.

(4) \Rightarrow (5) Let *B* be any subset of *Y*. By (4), $f(\#rg\text{-}cl(f^{-1}(B))) \subset ker(B)$ and $\#rg\text{-}cl(f^{-1}(B)) \subset f^{-1}(ker(B))$

 $(5) \Rightarrow (1)$ Let B be any open set of Y. By (5), $\#rg\text{-}cl(f^{-1}(B)) \subset f^{-1}(ker(B)) = f^{-1}(B)$ and $\#rg\text{-}cl(f^{-1}(B)) = f^{-1}(B)$. We obtain that, $f^{-1}(B)$ is #rg-closed in X.

Theorem 2.4. Suppose that X and Y are spaces and #RGO(X) is closed under arbitrary unions. If a function $f : X \to Y$ is contra #rg-continuous and Y is regular, then f is #rg-continuous.

Proof. Let x be an arbitrary point of X and V be an open set of Y containing f(x). Since Y is regular, there exist an open set G in Y containing f(x) such that $cl(G) \subset V$. Since f is contra #rg-continuous, there exist $U \in \#RGO(X)$ containing x such that $f(U) \subset cl(G)$. Then $f(U) \subset cl(G) \subset V$. Hence, f is #rg-continuous.

Theorem 2.5. Let $f : (X, T) \to (Y, S)$ be a function. Suppose that (X, T) is a $\#rg \cdot T_{\frac{1}{2}}$ space. Then the following are equivalent:

- (1) f is contra #rg-continuous,
- (2) f is contra continuous.

Proof. The proof is obvious.

Theorem 2.6. If a function $f : X \to \prod Y_i$ is contra #rg-continuous, then $p_i \circ f : X \to Y_i$ is contra #rg-continuous for each $i \in I$, where p_i is the projection of $\prod Y_i$ onto Y_i .

Proof. Let V_i be any open set of Y_i . Since p_i is continuous, $p_i^{-1}(V_i)$ is open in $\prod Y_i$. Since f is contra #rg-continuous, $f^{-1}(p_i^{-1}(V_i)) = (p_i \circ f)^{-1}(V_i) \in \#RGC(X)$. This shows that $p_i \circ f$ is contra #rg-continuous for each $i \in I$.

Definition 2.7. A topological space (X, T) is said to be **locally** #rg-indiscrete if every #rg-open set of X is closed in X.

Theorem 2.8. Let $f : (X, T) \to (Y, S)$ be a function. If f is contra #rg-continuous and (X, T) is locally #rg-indiscrete, then f is continuous.

Definition 2.9. A function $f : X \to Y$ is said to be #rg-irresolute if $f^{-1}(V) \in \#RGO(X)$ for each $V \in \#RGO(Y)$.

Theorem 2.10. Let $f : X \to Y$ and $g : Y \to Z$ be functions. Then, the following properties hold:

- (1) If f is #rg-irresolute and g is contra #rg-continuous, then $g \circ f : X \to Z$ is contra #rg-continuous.
- (2) If f is contra #rg-continuous and g is continuous, then $g \circ f : X \to Z$ is contra #rg-continuous.
- (3) If f is contra #rg-continuous and g is RC-continuous, then $g \circ f : X \to Z$ is #rg-continuous.
- (4) If f is #rg-continuous and g is contra continuous, then $g \circ f : X \to Z$ is contra #rg-continuous.

Theorem 2.11. Suppose that #RGC(Y) is closed under arbitrary intersections. If $f : X \to Y$ is a surjective #rg-open function and $g : Y \to Z$ is a function such that $g \circ f : X \to Z$ is contra #rg-continuous, then g is contra #rg-continuous.

Proof. Suppose that x and y are two points in X and Y respectively, such that f(x) = y. Let $B \in C(Z, (g \circ f)(x))$. Then there exits a #rg-open set A in X containing x such that $g(f(A)) \subset B$. Since f is #rg-open, f(A) is a #rg-open in Y containing y such that $g(f(A)) \subset B$. This implies that g is contra #rg-continuous.

Corollary 2.12. Let $f : X \to Y$ be a surjective #rg-irresolute and #rg-open function and let $g : Y \to Z$ be a function. Suppose that #RGC(Y) is closed under arbitrary intersections. Then $g \circ f : X \to Z$ is contra #rg-continuous if and only if g is contra #rg-continuous.

Proof. Follows from Theorem 2.10 and 2.11

3. Properties of contra *#rg*-continuous functions

Definition 3.1. The #rg-frontier of a subset A of a space X is given by #rg-fr(A) = #rg- $cl(A) \cap \#rg$ - $cl(X \setminus A)$.

Theorem 3.2. Let the collection of all #rg-closed sets of a space (X, τ) be closed under arbitrary intersections. The set of all points $x \in X$ at which a function $f : (X, \tau) \rightarrow (Y, \sigma)$ is not contra #rg-continuous is identical with the union of #rg-frontier of the inverse images of closed sets containing f(x).

Proof. (⇒) Suppose that *f* is not contra #rg-continuous at $x \in X$. Then there exists a closed set *A* of *Y* containing f(x) such that f(U) is not contained in *A* for every $U \in \#RGO(X)$ containing *x*. Then $U \cap (X \setminus f^{-1}(A)) \neq \phi$ for every $U \in \#RGO(X)$ containing *x* and hence $x \in \#rg$ - $cl(X \setminus f^{-1}(A))$. On the other hand, we have $x \in$ $f^{-1}(A) \subset \#rg$ - $cl(f^{-1}(A))$ and hence $x \in \#rg$ - $fr(f^{-1}(A))$.

(⇐) Suppose that *f* is contra #rg-continuous at $x \in X$, and let *A* be a closed set of *Y* containing f(x). Then there exists $U \in \#RGO(X)$ containing *x* such that $U \subset f^{-1}(A)$; hence $x \in \#rg$ -int $(f^{-1}(A))$. Therefore, $x \notin \#rg$ - $fr(f^{-1}(A))$ for each closed set *A* of *Y* containing f(x). This completes the proof.

Corollary 3.3. Let #RGC(X) be closed under arbitrary intersections. A function $f : X \to Y$ is not contra #rg-continuous at x if and only if $x \in \#rg$ - $fr(f^{-1}(F))$ for some $F \in C(Y, f(x))$.

Definition 3.4. A space X is said to be $\#rg \cdot T_1$ if for each pair of distinct points x and y in X, there exists #rg-open sets U and V containing x and y, respectively, such that $y \notin U$ and $x \notin V$.

Definition 3.5. A space X is said to be $\#rg \cdot T_2$ if for each pair of distinct points x and y in X, there exists $U \in \#RGO(X, x)$ and $V \in \#RGO(X, y)$ such that $U \cap V = \phi$.

Theorem 3.6. Let *X* and *Y* be topological spaces. If

- (1) for each pair of distinct points x and y in X, there exists a function f of X into Y such that $f(x) \neq f(y)$.
- (2) *Y* is an Urysohn space and *f* is contra #rg-continuous at *x* and *y*, then *X* is #rg- T_2 .

Proof. Let x and y be distinct points in X. Then, there exists a Urysohn space Y and a function $f: X \to Y$ such that $f(x) \neq f(y)$ and f is contra #rg-continuous at x and y.

Let z = f(x) and v = f(y). Then $z \neq v$. We have to prove X is $\#rg-T_2$ space. Since Y is Urysohn, there exist open sets V and W containing z and v, respectively such that $cl(V) \cap cl(W) = \phi$. Since f is contra #rg-continuous at x and y, then there exists #rg-open sets A and B containing x and y, respectively such that, $f(A) \subset cl(V)$ and $f(B) \subset cl(W)$. We have $A \cap B = \phi$. Since $cl(V) \cap cl(W) = \phi$, Hence X is $\#rg-T_2$.

Corollary 3.7. Let $f : X \to Y$ be a contra #rg-continuous injection. If Y is an Urysohn space, then it is #rg- T_2 .

Definition 3.8. A space X is said to be #rg-connected if X is not the union of two disjoint nonempty #rg-open sets.

Theorem 3.9. For a topological space X, the following properties are equivalent:

(1) X is #rg-connected,

- (2) The only subsets of X which are both #rg-open and #rg-closed are the empty set ϕ and X,
- (3) Each contra #rg-continuous function of X into a discrete space Y with at least two points is a constant function.

Proof. (1) \Rightarrow (2) Suppose $A \subset X$ is a proper subset which is both #rg-open and #rg-closed. Then its complement $X \setminus A$ is also #rg-open and #rg-closed. Then $X = A \cup (X \setminus A)$ is a disjoint union of two nonempty #rg-open sets which contradicts the fact that X is #rg-connected. Hence, $A = \phi$ or X.

(2) \Rightarrow (1) Suppose $X = A \cup B$ where $A \cap B = \phi$, $A \neq \phi$, $B \neq \phi$ and A and B are #rg-open. Since $A = X \setminus B$, A is #rg-closed. But by hypothesis $A = \phi$, which is a contradiction. Hence (1) holds.

 $(2) \Rightarrow (3)$ Let $f: X \to Y$ be a contra #rg-continuous function where Y is a discrete space with atleast two points. Then $f^{-1}(\{y\})$ is #rg-closed and #rg-open for each $y \in Y$ and $X = \bigcup \{f^{-1}(\{y\}) : y \in Y\}$. By hypothesis, $f^{-1}(\{y\}) = \phi$ or X. If $f^{-1}(\{y\}) = \phi$ for all $y \in Y$, f is not a function. Also there cannot exist more than one $y \in Y$ such that $f^{-1}(\{y\}) = X$. Hence, there exists only one $y \in Y$ such that $f^{-1}(\{y\}) = X$ and $f^{-1}(\{y\}) = \phi$ where $y \neq y_1 \in Y$. This shows that f is a constant function.

 $(3) \Rightarrow (2)$ Let *P* be both #rg-open and #rg-closed in *X*. Suppose $P \neq \phi$. Let $f : X \rightarrow Y$ be a contra #rg-continuous function defined by $f(P) = \{a\}$ and $f(X \setminus P) = \{b\}$ where $a \neq b$ and $a, b \in Y$. By hypothesis, f is costant. Therefore, P = X.

Theorem 3.10. If f is a contra #rg-continuous function from a #rg-connected space X onto any space Y, then Y is not a discrete space.

Proof. Suppose that Y is discrete. Let A be a proper nonempty clopen subset of Y. Then $f^{-1}(A)$ is a proper nonempty #rg-clopen subset of X, which is a contradiction to the fact that X is #rg-connected.

Theorem 3.11. A space X is #rg-connected if every contra #rg-continuous function from a space X into any T_0 -space Y is constant.

Proof. Suppose that X is not #rg-connected and that every contra #rg-continuous function from X into Y is constant. Since X is not #rg-connected, there exists a proper nonempty #rg-clopen subset A of X. Let $Y = \{a, b\}$ and $\tau = \{Y, \phi, \{a\}, \{b\}\}$ be a topology for Y. Let $f : X \to Y$ be a function such that $f(A) = \{a\}$ and $f(X \setminus A) = \{b\}$. Then f is non-constant and contra #rg-continuous such that Y is T_0 , which is a contradiction. Hence, X must be #rg-connected.

Theorem 3.12. If $f : X \to Y$ is a contra #rg-continuous surjection and X is #rg-connected, then Y is connected.

Proof. Suppose that Y is not a connected space. There exists nonempty disjoint open sets V_1 and V_2 such that $Y = V_1 \cup V_2$. Therefore, V_1 and V_2 are clopen in Y. Since f is

contra #rg-continuous, $f^{-1}(V_1)$ and $f^{-1}(V_2)$ are #rg-open in X. Moreover, $f^{-1}(V_1)$ and $f^{-1}(V_2)$ are nonempty disjoint and $X = f^{-1}(V_1) \cup f^{-1}(V_2)$. This shows that X is not #rg-connected. This contradicts that Y is not connected assumed. Hence, Y is connected.

Theorem 3.13. Let $p: X \times Y \to X$ be a projection. If A is #rg-closed subset of X, then $p^{-1}(A) = A \times Y$ is #rg-closed subset of $X \times Y$.

Proof. Let $A \times Y \subset U$ and U be rw-open subset of $X \times Y$. Then $U = V \times Y$ for some rw-open set of X. Since A is #rg-closed in X, $cl(A) \subset V$ and so $cl(A) \times Y \subset V \times Y = U$, i.e., $cl(A \times Y) \subset U$. Hence, $A \times Y$ is #rg-closed subset of $X \times Y$.

Proposition 3.14. If $f : X \to Y$ is a #rg-irresolute surjection and X is #rg-connected, then Y is #rg-connected.

Proposition 3.15. If the product space of two nonempty topological spaces is #rg-connected, then each factor space is #rg-connected.

Proof. Let $X \times Y$ be the product space of the nonempty spaces X and Y and $X \times Y$ be #rg-connected. The projection $p: X \times Y \to X$ is #rg-irresolute and then $p(X \times Y) = X$ is #rg-connected. The proof for the space Y is similar to the case of X.

Definition 3.16. A space X is said to be

- (i) #rg-compact if every #rg-open cover of X has a finite subcover,
- (ii) countably #rg-compact if every countable cover of X by #rg-open sets has a finite subcover,
- (iii) #rg-Lindelof if every #rg-open cover of X has a countable subcover.

Theorem 3.17. If $f : X \to Y$ is contra #rg-continuous and A is #rg-compact relative to X, then f(A) is strongly S-closed in Y.

Proof. Let $\{V_i : i \in I\}$ be any cover of f(A) by closed sets of the subspace f(A). For each $i \in I$, there exists a closed set A_i of Y such that $V_i = A_i \cap f(A)$. For each $x \in A$, there exists $i(x) \in I$ such that $f(x) \in A_{i(x)}$ and there exists $U_x \in \#RGO(X, x)$ such that $f(U_x) \subseteq A_{i(x)}$. Since the family $\{U_x : x \in A\}$ is a cover of A by #rg-open sets of X, there exists a finite subset A_0 of A such that $A \subseteq \cup \{U_x : x \in A_0\}$. Hence, we obtain $f(A) \subseteq \cup \{f(U_x) : x \in A_0\}$ which is a subset of $\cup \{A_{i(x)} : x \in A_0\}$. Thus, $f(A) = \cup \{V_{i(x)} : x \in A_0\}$ and hence f(A) is strongly S-closed.

Corollary 3.18. If $f : X \to Y$ is contra #rg-continuous surjection and X is #rg-compact, then Y is strongly S-closed.

Theorem 3.19. If the product space of two nonempty topological spaces is #rg-compact, then the factor space is #rg-compact.

Proof. Let $X \times Y$ be the product space of the nonempty spaces X and Y and $X \times Y$ be #rg-compact. The projection $p: X \times Y \to X$ is #rg-irresolute and then $p(X \times Y) = X$ is #rg-compact. The proof for the space Y is similar to the case of X.

Theorem 3.20. The contra #rg-continuous images of #rg-lindelof (resp. countably #rg-compact) spaces are strongly *S*-lindelof (respectively strongly countably *S*-closed).

Proof. Let $f : X \to Y$ be a contra #rg-continuous surjection. Let $\{V_i : i \in I\}$ be any closed cover of Y. Since f is contra #rg-continuous, then $f^{-1}(V_i) : i \in I\}$ is a #rg-open cover of X and hence there exists a countable subset I_0 of I such that $X = \bigcup \{f^{-1}(V_i) : i \in I_0\}$. Therefore, we have $Y = \bigcup \{V_i : i \in I_0\}$ and Y is strongly S-Lindelof.

Definition 3.21. The graph G(f) of a function $f : X \to Y$ is said to be contra #rg-graph if for each $(x, y) \in (X \times Y) \setminus G(f)$, there exist a #rg-open set A in X containing x and a closed set B in Y containing y such that $(A \times B) \cap G(f) = \phi$.

Proposition 3.22. The following properties are equivalent for the graph G(f) of a function f:

- (i) G(f) is contra #rg-graph;
- (ii) for each $(x, y) \in (X \times Y) \setminus G(f)$, there exists a #rg-open set A in X and a closed set B in Y containing y such that $f(A) \cap B = \phi$.

Theorem 3.23. If $f : X \to Y$ is contra #rg-continuous and Y is Urysohn, G(f) is contra-#rg-graph in $X \times Y$.

Proof. Let $(x, y) \in (X \times Y) \setminus G(f)$. It follows that $f(x) \neq y$. Since Y is Urysohn, there exists open sets B and C such that $f(x) \in B$, $y \in C$ and $cl(B) \cap cl(C) = \phi$. Since f is contra #rg-continuous, there exists a #rg-open set A in X containing x such that $f(A) \subseteq cl(B)$. Therefore, $f(A) \cap cl(C) = \phi$ and G(f) is contra-#rg-graph in $X \times Y$.

Theorem 3.24. Let $f : X \to Y$ be a function and $g : X \to X \times Y$ the graph function of f, defined by g(x) = (x, f(x)) for every $x \in X$. If g is contra #rg-continuous, then f is contra-#rg-continuous.

Proof. Let U be an open set in Y, then $X \times U$ is an open set in $X \times Y$. It follows that $f^{-1}(U) = g^{-1}(X \times U) \in |\#RGC(X)$. Thus f is contra-#rg-continuous.

Theorem 3.25. If $f : X \to Y$ and $g : X \to Y$ are contra #rg-continuous and Y is Urysohn, then $E = \{x \in X : f(x) = g(x)\}$ is #rg-closed in X.

Proof. Let $x \in X \setminus E$. Then $f(x) \neq g(x)$. Since Y is Urysohn, there exist open sets V and C such that $f(x) \in V$, $g(x) \in C$ and $cl(V) \cap cl(C) = \phi$. Since f and g are contra #rg-continuous, $f^{-1}(cl(V)) \in \#RGO(X)$ and $g^{-1}(cl(C)) \in \#RGO(X)$. Let

 $U = f^{-1}(cl(V))$ and $G = g^{-1}(cl(C))$. Then U and V contain x. Set $A = U \cap G$. A is #rg-open in X. Hence $f(A) \cap g(A) = \phi$ and $x \notin \#rg$ -cl(E). Thus, E is #rg-closed in X.

Definition 3.26. A subset A of a topological space X is said to be #rg-dense in X if #rg-cl(A) = X.

Theorem 3.27. Let $f : X \to Y$ and $g : X \to Y$ be functions. If

- (1) Y is Urysohn,
- (2) f and g are contra #rg-continuous,
- (3) f = g on #rg-dense set $A \subset X$, then f = g on X.

Proof. Since f and g are contra #rg-continuous and Y is Urysohn, by the previous theorem $E = \{x \in X : f(x) = g(x)\}$ is #rg-closed in X. We have f = g on #rg-dense set $A \subset X$. Since $A \subset E$ and A is #rg-dense set in X, then X = #rg- $cl(A) \subset \#rg$ -cl(E) = E. Hence, f = g on X.

Definition 3.28. A space X is said to be weakly Hausdorff [9] if each element of X is an intersection of regular closed sets.

Theorem 3.29. If $f : X \to Y$ is a contra #rg-continuous injection and Y is weakly Hausdorff, then X is #rg- T_1 .

Proof. Suppose that Y is weakly Hausdorff. For any distinct points x and y in X, there exists regular closed sets A, B in Y such that $f(x) \in A$, $f(y) \notin A$, $f(x) \notin B$ and $f(y) \in B$. Since f is contra #rg-continuous, $f^{-1}(A)$ and $f^{-1}(B)$ are #rg-open subsets of X such that $x \in f^{-1}(A)$, $y \notin f^{-1}(A)$, $x \notin f^{-1}(B)$ and $y \in f^{-1}(B)$. This shows that X is #rg-T₁.

Theorem 3.30. Let $f : X \to Y$ have a contra-#*rg*-graph. If f is injective, then X is #rg- T_1 .

Proof. Let *x* and *y* be any two distinct points of *X*. Then, we have $(x, f(y)) \in (X \times Y) \setminus G(f)$. Then, there exist a #rg-open set *U* in *X* containing *x* and $F \in C(Y, f(y))$ such that $f(U) \cap F = \phi$; hence $U \cap f^{-1}(F) = \phi$. Therefore, we have $y \notin U$. This implies that *X* is #rg- T_1 .

Theorem 3.31. Let $f : X \to Y$ be a contra-#*rg*-continuous injection. If Y is an ultra Hausdorff space, then X is #rg- T_2 .

Proof. Let *x* and *y* be any two distinct points in *X*. Then, $f(x) \neq f(y)$ and there exist clopen sets *A* and *B* containing f(x) and f(y), respectively such that $A \cap B = \phi$. Since *f* is contra #rg-continuous, then $f^{-1}(A) \in \#RGO(X)$ and $f^{-1}(B) \in \#RGO(X)$ such that $f^{-1}(A) \cap f^{-1}(B) = \phi$. Hence, *X* is #rg-*T*₂.

Definition 3.32. A topological space X is said to be #rg-normal if each pair of nonempty disjoint closed sets can be separated by disjoint #rg-open sets.

Theorem 3.33. If $f : X \to Y$ is a contra-#*rg*-continuous closed injection and *Y* is ultra normal, then *X* is #*rg*-normal.

Proof. Let *A* and *B* be disjoint closed subsets of *X*. Since *f* is a closed injection, f(A) and f(B) are disjoint and closed in *Y*. Since *Y* is ultra normal, f(A) and f(B) are separated by disjoint clopen sets *C* and *D*, respectively. Thus, $A \subseteq f^{-1}(C)$, $B \subseteq f^{-1}(D) \in \#RGO(X)$ and $f^{-1}(C) \cap f^{-1}(D) = \phi$. Hence, *X* is #rg-normal.

References

- Cameron, Properties of S-closed spaces, Proc. Amer. Math. Soc., 72(1978), 581– 586.
- [2] Dontchev J. *Contra-continuous functions and strongly S-closed spaces*. Int J Math Sci 1996; 19(2): 303–10.
- [3] Dontchev J. and Noiri T, *Contra-semicontinuous functions*, Math. Pannonica 10 (1999), 159–168.
- [4] Jafari S. and Noiri T, *Contra-super-continuous functions*. Annales Univ. Sci. Budapest 42(1999), 27–34.
- [5] Levine N. Semi-open sets and semi-continuity in topological spaces. Amer Math Monthly 1963; 70: 36–41.
- [6] Mrsevic M. On pairwise R and pairwise R₁ bitopological spaces. Bull Math Soc Sci Math RS Roumanie 1986; 30:141–8.
- [7] Staum R, *The algebra of bounded continuous functions into a nonarchimeddean field*, Pacific J Math 1974; 50: 169–185.
- [8] Stone MH. *Applications of the theory of Boolean rings to general topology*. Trans Amer Math Soc 1937; 41:375–481.
- [9] Soundararajan T. *Weakly Hausdorff spaces and the cardinality of topological spaces*, In: General topology and its relation to modern analysis and algebra. III, Proc. Conf. Kanpur, 1968, Academic, Prague 1971. p. 301–6.
- [10] Syed Ali Fathima S. and Mariasingam M., On # regular generalized closed sets in topological spaces, Int. J. Math. Archive, 2 (11): 2497–2502, 2011.
- [11] Syed Ali Fathima S. and M. Mariasingam M., *On # regular generalized open sets in topological spaces*, Int. J. Com. Appl., 42(7): 37–41, 2012.
- [12] Syed Ali Fathima S. and Mariasingam M., *On* #*rg-continuous and* #*rg-irresolute functions*, to be appear in Journal of Advanced Studies in Topology.
- [13] Tong J. On decomposition of continuity in topological spaces, Acta Math. Hungar. 54(1998), 51–55.
- [14] R. S. Wali, *Some Topics in General and Fuzzy Topological Spaces*, Ph. D., Thesis, Karnatak University, Karnataka (2006).