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ABSTRACT 

 
In this paper a rational cubic algebraic spline with two shape parameters is 
developed to create a high-order smoothness interpolation using function 
values and derivative values which are being interpolated. This is a kind of 
rational cubic interpolation with quadratic denominator. This rational spline 
interpolant is monotonic interpolant to given monotonic data. The more 
important achievement is that it is also used to constrain the shape of the 
interpolant curve such as to force it to be in the given region, all because of the 
selectable parameters in the rational spline itself. 
 
Keywords: Interpolation, Rational spline, Shape parameters, Monotonicity, 
Error estimation, Constrained interpolation. 

 
 
1. Introduction 
In recent years spline methods have become the main tools for solving a large number 
of problems involving interpolation and approximation of functions. In many 
industrial problems of design and manufacturing, it is usually needed to generate a 
smooth function which passes through the given data set and preserves shape 
properties like positivity, monotonicity and convexity. Stability of radioactive 
substance and chemical reactions, solvability of solute in solvent, population statistics 
[2], resistance offered by an electric circuit, probability distribution are a few 
examples of entities which need to be always positive. Monotonicity is applied in the 
specification of Digital to Analog Converters (DACs), Analog to Digital Converters 
(ADCs) and sensors. These devices are used in control system applications where as 
non-monotonicity is unacceptable [6]. Erythrocyte sedimentation rate (E.S.R.) in 
cancer patients, uric acid level in patients suffering from gout, data generated from 
stress of a material [6], approximation of couples and quasi couples in statistics, rate 
of dissemination of drug in blood [1] are a few examples of entities which are always 
required to be monotone. Many authors have contributed to the problems of shape 
preserving interpolation [4, 5, 7, 9, 12].  
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 Rational functions have become more popular in the construction of curves and 
surfaces in CAD, CAM because of their more flexibility and shape preserving ability 
[3, 5, 6, 10]. It has been observed that many simple shapes including conic section 
and quadric surfaces can not be represented exactly by piecewise polynomials, 
whereas rational polynomials can exactly represent all conic sections and quadric 
surfaces in an easy manner [8]. 
 In section 2 we have constructed C1 rational cubic interpolant with two shape 
parameters. In Section 3 we have derived the sufficient conditions for monotonicity of 
the interpolant. Section 4 is about error estimation of the interpolant. This 
construction confirms that the expected approximation order is O(h2). The 
visualization problems of constrained data interpolation is discussed in section 5. In 
section 6 we have discussed a numerical example with graphical representation for 
constrained data interpolation. 
 
 
2. C1 Rational Cubic Spline Interpolant 
Let {(ݐ௜ , ௜݂), ݅ = 1, 2, … , ݊ } be a given set of data point defined over the interval [ܽ,ܾ] 
where a = ݐଵ < ݐଶ < … < ݐ௡ = b and ௜݂ are the function values at the knots. 
 Let ℎ௜ = ௜ାଵݐ  − =௜, ∆௜ݐ  ௙೔శభି௙೔

௛೔
, ݅ =  1, 2, … ,݊ − 1. 

 For ݐ ∈ ,௜ݐ] ߠ ௜ାଵ], letݐ =  ௧ି ௧೔
௛೔

, 0 ≤ ≥ ߠ  1. 
 
 A piecewise rational cubic function ܵ(ݐ) ∈  ܿଵൣݐଵ, ݐ௡൧ and is defined for ݐ ∈
,௜ݐ]  :௜ାଵ] asݐ

(ݐ)ܵ =  ௜ܵ(ݐ) =  ௜ܲ(ݐ)
ܳ௜(ݐ)

=  
(1− ௜ܣ௜ߙଶ(ߠ + ଶ(1ߠ  − ௜ܤ(ߠ + −1)ߠ  ௜ܥଶ(ߠ + ௜ܦ௜ߚଶߠ

(1− ௜ߙଶ(ߠ + ଶ(1ߠ  − (ߠ + 1)ߠ  − ଶ(ߠ + ௜ߚଶߠ
  

(1) 
 The rational cubic interpolant has the following interpolatory properties: 
(௜ݐ)ܵ  =  ௜݂, ܵ(ݐ௜ାଵ) =  ௜݂ାଵ,ܵ (௜ݐ)  =  ݀௜, ܵ (௜ାଵݐ)  =  ݀௜ାଵ  (2) 
 
which provides the following manipulations: 

௜ܣ =  ௜݂, ܤ௜ =  ௜݂ାଵ − ௜ܥ,௜ℎ௜݀௜ାଵߚ  =  ௜݂ + ௜ܦ ,௜ℎ௜݀௜ߙ  =  ௜݂ାଵ, 
 
where ݀௜ are the derivative values of the interpolant at the knots and ߙ௜,  ௜ areߚ 
positive shape parameters. In most applications, derivative parameters ݀௜ are not 
given and hence must be determined from data (ݐ௜, ௜݂). An appropriate choice is 
mentioned here (see [13]): 

݀௜ =  ௛೔∆೔షభା௛೔షభ∆೔ 
௛೔ା௛೔షభ

, ݅ = 2, 3, … ,݊ − 1, 

 ݀ଵ =  ∆ଵ +  
(∆ଵ − ∆ଶ)ℎଵ
ℎଵ + ℎଶ

 

 ݀௡ =  ∆௡ିଵ +  
(∆௡ିଵ − ∆௡ିଶ)ℎ௡ିଵ

ℎ௡ିଵ + ℎ௡ିଶ
 

 (3) 
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 This method is based on three point difference approximation for the ݀௜ . 
 
 
3. Monotonicity-Preserving Rational Spline Interpolation 
We assume a monotonic increasing data, so that 
 ଵ݂  < ଶ݂ < ⋯ < ௡݂ or equivalently ∆௜ > 0 (݅ = 1, 2, … ,݊ − 1)  (4) 
 
 To have a monotonic interpolant ܵ(ݐ), it is necessary that the derivative 
parameters ݀௜ should satisfy: 
 ݀௜ > 0 (݀௜ < 0 for monotonic decreasing data) ݅ = 1, 2, … , ݊   (5) 
 
 Now ܵ(ݐ) is monotonically increasing if and only if ܵ (ݐ)   > 0, ∋ ݐ ௜ݐ]  ,  .[௜ାଵݐ
After some simplification it can be written as 
  ܵ (ݐ)  =  ௑ା ൣ∑ ோ೔ ఏ೔షభ(ଵିఏ)ఱష೔ఱ

೔సభ ൧
[ொ೔(ఏ)]మ

  (6) 
 
where  
 ܺ = −ଷ(1ߠ  ଵܭଶ(ߠ + −ଶ(1ߠ  ଶܭଷ(ߠ + −ଶ(1ߠ  ଷܭ(ߠ + −1)ߠ  ସܭଶ(ߠ
ଵܭ  = ଶܭ  = ௜ܤ)  −   ,(௜ܥ
ଷܭ  = ସܭ  = ௜ܦ)௜ߚ௜ߙ2 −   ,(௜ܣ
 ܴଵ = ௜ܥ)௜ߙ  −   ,(௜ܣ
  ܴଶ = ௜ܤ)௜ߙ2 −   ,(௜ܣ 
  ܴଷ = ௜ܤ)௜ߙ]  − (௜ܣ  + ௜ܦ)௜ߚ  −   ,[(௜ܥ
  ܴସ = ௜ܦ)௜ߚ2 −   ,(௜ܥ
  ܴହ = ௜ܦ)௜ߚ  −  ௜),  (7)ܤ 
 
 After simple manipulation above equations can be written as 
ଵܭ   = ଶܭ  =  ∆௜ − ௜݀௜ାଵߚ    ,௜݀௜ߙ −
ଷܭ   = ସܭ  = ௜ܦ)௜ߚ௜ߙ2 −   ,(௜ܣ
  ܴଵ =   ,௜ଶ ݀௜ߙ 
  ܴଶ = ௜(∆௜ߙ2 −   ,(௜݀௜ାଵߚ
  ܴଷ = ௜(∆௜ߙ]  − (௜݀௜ାଵߚ + ௜ (∆௜ߚ  −   ,[(௜݀௜ߙ
  ܴସ = ௜(∆௜ߚ2 −   ,(௜݀௜ߙ
  ܴହ = ௜ߚ 

ଶ݀௜ାଵ,  
 
 We observe that for ߙ௜ ௜ߚ,  > 0 the denominator of rational function  ܵ  given in (ݐ) 
(6) is positive. 
 Therefore considering the numerator in (6), we find that  ܵ  is positive if (ݐ) 
ܴଶ  > 0 and ܴସ  > 0 for monotonic increasing data. Thus the sufficient condition that 
ܴଶ  > 0 and ܴସ  > 0 is 
௜ߙ  < ∆೔

ௗ೔
 and ߚ௜ < ∆೔

ௗ೔శభ
  (9) 

 
 Therefore  ܵ  : is positive if (9) holds. We have thus proved the following (ݐ) 
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Theorem 3.1 Given a monotonic increasing set of data satisfying (4) and the 
derivative values satisfying (5), there exists a monotone rational spline interpolant 
(ݐ)ܵ ∈  ௜ which satisfies theߚ ௜, andߙ ௡൧ involving the shape parametersݐ ,ଵݐଵൣܥ 
interpolatory conditions (2) provided (9) holds. 
 
 
4. Error Estimation 
In this Section, the error of interpolation is estimated when the function ݂(ݐ) being 
interpolated is ܥଶൣݐଵ, ݐ௡൧. The interpolation scheme developed in this section is local, 
which allows investigating the error in an arbitrary subinterval ܫ௜ = ,௜ݐ]   ௜ାଵ] withoutݐ
loss of generality. Using Peano Kernel Theorem [11] the error of interpolation in each 
subinterval ܫ௜ = ,௜ݐ]    :௜ାଵ] isݐ
 ܴ[݂] = (ݐ)݂ − (ݐ)ܵ =  ଵ

ଶ
 ∫ ݂ଶ(߬)ܴ௧[(ݐ − ߬)ା]݀߬௧೔శభ
௧೔

,  (10) 
 
 It is assumed that the function being interpolated is ݂(ݐ) ∈  ௡൧. Theݐ ,ଵݐଶൣܥ 
absolute error in ܫ௜ = ,௜ݐ]   :௜ାଵ] isݐ
  ݂ (ݐ) − ≥ (ݐ)ܵ ଵ

ଶ
  ⃦݂ଶ(߬)  ⃦ ∫  ௧೔శభ

௧೔
 ܴ௧[(ݐ − ߬)ା]� ݀(߬),  (11) 

 
with 

  ݈ܴ௧ ݐ)]  − ߬)ା] = 
௜ݐ (߬)݌  <  ߬ < ݐ

ݐ (߬)ݍ  < ߬ <  ௜ାଵ   (12)ݐ

 
where ݍ ,(߬)݌(߬) are rational polynomials given by 
 
(߬)݌  = ݐ)  − ߬) − ቂൣ൫ఏ

మ(ଵିఏ)ାఏమఉ೔൯(௧೔శభିఛ)൧ିఉ೔௛೔ఏమ(ଵିఏ) 
(ଵିఏ)మఈ೔ା ఏమ(ଵିఏ)ା ఏ(ଵିఏ)మାఏమఉ೔

ቃ,  
 
(߬)ݍ  = − ቂൣ൫ఏ

మ(ଵିఏ)ାఏమఉ೔൯(௧೔శభିఛ)൧ିఉ೔௛೔ఏమ(ଵିఏ) 
(ଵିఏ)మఈ೔ା ఏమ(ଵିఏ)ା ఏ(ଵିఏ)మାఏమఉ೔

ቃ. 
 
 Thus,  
 ∫   ܴ௧[(ݐ − ߬)ା] ௧೔శభ

௧  ݀߬ =  ∫ ௧ (߬)݌  
௧೔

 ݀߬ +  ∫ ௧೔శభ߬݀  (߬)ݍ  
௧   (13) 

 
 For ݌(߬), since 
(௜ݐ)݌  =  ℎ௜ ቂ

ఏ(ଵିఏ)మఈ೔
(ଵିఏ)మఈ೔ା ఏమ(ଵିఏ)ା ఏ(ଵିఏ)మାఏమఉ೔

ቃ ≥ 0,  
 
(ݐ)݌  =  −ℎ௜ ቂ

ఏమ(ଵିఏ)మ

(ଵିఏ)మఈ೔ା ఏమ(ଵିఏ)ା ఏ(ଵିఏ)మାఏమఉ೔
ቃ  ≤ 0. 

 
 Thus, it may be observed that, there is a zero point ݌(߬ଵ) of ݌(߬) in [ݐ௜,  ௜ାଵ] givenݐ
by 
 ߬ଵ = ௜ାଵݐ  − ቂ௛೔(ଵିఏ)൛(ଵିఏ)మఈ೔ାఏమ(ଵିఏ)ାఏ(ଵିఏ)మൟ

(ଵିఏ)మఈ೔ାఏ(ଵିఏ)మ
ቃ. 
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 Thus,  
 ∫ ௧ ߬݀  (߬)݌  

௧೔
=  ∫  ఛభ߬݀ (߬)݌ 

௧೔
+  ∫ ௧߬݀ (߬)݌−

ఛభ 
=  ℎ௜

ଶ(14)  ܯ 
 
where 

ܯ = ଵܯ  +  
ଶ(1ߠ − (ߠ + ௜ߚଶߠ

(1− ௜ߙଶ(ߠ + ଶ(1ߠ  − (ߠ + 1)ߠ  − ଶ(ߠ + ௜ߚଶߠ
ଶܯ  +

ଶ(1ߠ௜ߚ − (ߠ
(1 − ௜ߙଶ(ߠ + ଶ(1ߠ  − (ߠ + 1)ߠ  − ଶ(ߠ + ௜ߚଶߠ

  ଷܯ 

 
with 

ଵܯ  =  ఏ
మ

ଶ
− ቂ ఏమ(ଵିఏ)మ

(ଵିఏ)మఈ೔ାఏ(ଵିఏ)మ
ቃ
ଶ
,  

ଶܯ  =  ቀ(ଵିఏ)మఈ೔ା ఏమ(ଵିఏ)ାఏ(ଵିఏ)మ

(ଵିఏ)మఈ೔ାఏ(ଵିఏ)మ
ቁ
ଶ 
− ଵ

ଶ
−  (ଵିఏ)మ

ଶ
,  

ଷܯ  =  ఏ(ଵିఏ)మఈ೔ିఏమ(ଵିఏ)మ

(ଵିఏ)మఈ೔ାఏ(ଵିఏ)మ
. 

 
 For ݍ(߬), since 
(ݐ)ݍ  =  − ቂ௛೔(ଵିఏ)൫ఏమ(ଵିఏ)ାఏమఉ೔൯ିఉ೔௛ఏమ(ଵିఏ)

(ଵିఏ)మఈ೔ା ఏమ(ଵିఏ)ା ఏ(ଵିఏ)మାఏమఉ೔
ቃ ≤ 0,  

 
(௜ାଵݐ)ݍ  =  ቂ ఉ೔௛೔ఏమ(ଵିఏ)

(ଵିఏ)మఈ೔ା ఏమ(ଵିఏ)ା ఏ(ଵିఏ)మାఏమఉ೔
ቃ ≤ 0. 

 
 Let ߬ଶ is the zero point(root) of ݍ(߬) then, it may easily be seen that 

߬ଶ = ௜ାଵݐ  −  
−ଶ(1ߠ௜ℎ௜ߚ (ߠ

−ଶ(1ߠ (ߠ + ௜ߚଶߠ
 

 
and 
 ∫ ௧೔శభ߬݀  (߬)ݍ  

௧ =  ∫ ఛమ ߬݀(߬)ݍ−
௧ +  ∫ ௧೔శభ߬݀(߬)ݍ

ఛమ
 =  ℎ௜

ଶ ܰ  (15) 
 
where 

ܰ =
(1− ସ൫(1ߠଶ(ߠ − ଶ(ߠ + −௜(1ߚ  (ߠ + ௜ߚ

ଶ൯
−ଶ(1ߠ (ߠ + ௜ߚଶߠ

 

 
 The above discussion leads to the following manipulation: 

 ݂ (ݐ) − ≥  (ݐ)ܵ  
1
2  ⃦݂ଶ(߬)  ⃦ ℎ௜

ଶ ߱(ߙ௜,ߚ௜   (ߠ,
 
where  

௜ߙ)߱ ௜ߚ, , ܯ = (ߠ + ܰ. 
 
 The above discussion is summarized in the following theorem: 
 
Theorem 4.1 The error of ܥଵ rational cubic function (1), for ݂(ݐ)  ∈ ,ଵݐ] ଶܥ   ௡] inݐ
each subinterval is given by 
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 ݂ (ݐ) − ≥  (ݐ)ܵ  ଵ
ଶ

  ⃦݂ଶ(߬)  ⃦ ℎ௜
ଶ ܿ௜ 

 
where ܿ௜ is the maximum value of ߱(ߙ௜,ߚ௜, ௜ߙ and 1 ≥ ߠ ≥ for 0 (ߠ < ௜ߚ, 0 
  
 
5. Constrained Data Interpolation 
Let {(ݐ௜ , ௜݂), ݅ = 1, 2, … , ݊ } be the given set of data points lying above the straight line 
y = mt + c 
i.e. 
 ௜݂  > ௜ݐ݉ +  ܿ ݅ = 1, 2, … , ݊.  (16) 
 
 The curve will lie above the straight line if the ܥଵ rational cubic function (1) 
satisfies the following condition: 
(ݐ)ܵ  > ݐ݉ + ܿ (or ܵ(ݐ) > ∋ ݐ ∀ ,((ݐ)ݑ ,଴ݐ]  ௜ܫ ௡]. For each subintervalݐ =
,௜ݐ]   ௜ାଵ], the above relation in parametric form is expressed asݐ
(ݐ)ܵ  > −௜(1ݑ  (ߠ +  (17)  .ߠ௜ାଵݑ 
 
where ߠ =  ௧ି௧೔

௛೔
 and ݑ௜(1 − (ߠ +  is the parametric equation of straight line ߠ௜ାଵݑ 

with ݑ௜ = ௜ݐ݉ + ܿ and ݑ௜ାଵ = ௜ାଵݐ݉ + ܿ. 
 Since ܳ௜(ݐ)  > 0 for ݐ ∈ ,௜ݐ]   ௜ାଵ], thenݐ

(ݐ)ܵ =  ௜ܲ(ݐ)
ܳ௜(ݐ)

> −௜(1ݑ  (ߠ +   ߠ௜ାଵݑ 

 
 Is equivalent to 

௜ܲ(ݐ) −  ܳ௜(ݐ)[ݑ௜(1− (ߠ + [ߠ௜ାଵݑ   > 0 
 
 Let,  
 ௜ܷ(ݐ) =  ௜ܲ(ݐ) −  ܳ௜(ݐ)[ݑ௜(1− (ߠ +  (18)  ,[ߠ௜ାଵݑ 
 
it follows 
 ௜ܷ(ݐ) =  (1− ௜ܣ ௜ߙ ଶ(ߠ + ଶ(1ߠ  − ௜ܤ(ߠ + 1)ߠ  − ௜ܥଶ(ߠ +  ௜ܦ௜ߚଶߠ 
 
 − ((1 − ௜ߙଶ(ߠ −ଶ(1ߠ + (ߠ + −1)ߠ  ଶ(ߠ + −௜(1ݑ)(௜ߚଶߠ (ߠ (ߠ௜ାଵݑ +  > 0  (19) 
 
 Since,  
 ((1− ௜ߙଶ(ߠ + ଶ(1ߠ  − (ߠ + −1)ߠ  ଶ(ߠ + ௜(1ݑ)(௜ߚଶߠ − (ߠ +  (ߠ௜ାଵݑ 
 
 = ௜(1ݑ௜ߙ  − ଶ(ߠ + ௜ߚ௜ݑ)  + ௜ାଵݑ  − ଶ(1ߠ(௜ߚ௜ାଵݑ −  (ߠ
 
௜ݑ) +  + ௜ߚ௜ݑ  + ௜ାଵݑ௜ߙ  − 1)ߠ(௜ݑ௜ߙ − ଶ(ߠ +   ,ଶߠ௜ାଵݑ௜ߚ 
 
equation (19) becomes 
 
 ௜ܷ(ݐ) =  (1− ௜ ଵܻߙ ଶ(ߠ + ଶ(1ߠ  − (ߠ ଶܻ + 1)ߠ  − ଶ(ߠ ଷܻ + ௜ߚଶߠ  ସܻ  (20) 
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where 
  ଵܻ =  ௜݂ −   ,௜ݑ
 
  ଶܻ =  ( ௜݂ାଵ − (௜ାଵݑ + ௜ߚ  ௜ାଵݑ)  − ௜ݑ − ℎ௜݀௜ାଵ),  
 
  ଷܻ =  ( ௜݂ − (௜ݑ + ௜ݑ) ௜ߙ  − ௜ାଵݑ + ℎ௜݀௜),  
 
  ସܻ =  ௜݂ାଵ −  .௜ାଵݑ
 
 Now ௜ܷ(ݐ) > 0 if ௜ܻ > 0 for ݅ = 1, 2, 3, 4. It is straightforward to know that 
ଵܻ > 0 and ସܻ > 0 are true from the necessary condition defined in (16). If ଶܻ  > 0, 
ଷܻ > 0 then ௜ܷ(ݐ)  > 0 for all ݐ ∈ ,௜ݐ]   .[௜ାଵݐ

 Hence, the following theorem holds: 
 
Theorem 5.1 The piecewise ܥଵ rational cubic interpolant ܵ(ݐ), defined over the 
interval [ܽ,ܾ], in (1), preserves the shape of data that lies above the straight line if in 
each subinterval ܫ௜ = ,௜ݐ]   ௜ାଵ] the following sufficient conditions are satisfiesݐ
 
 ( ௜݂ − (௜ݑ + ௜ߙ  ௜ݑ)  − ௜ାଵݑ + ℎ௜݀௜) > 0,  (21) 
 
 ( ௜݂ାଵ − (௜ାଵݑ + ௜ߚ  ௜ାଵݑ)  − ௜ݑ − ℎ௜݀௜ାଵ) > 0. 
 
 For the case when 
 ௜݂ < ௜ݐ݉ + ܿ, ݅ = 1, 2, … ,݊.  (22) 
 
 The curve will lie below the straight line if the ܥଵ rational cubic function (1) 
satisfies the following condition: 
 
(ݐ)ܵ  < ݐ݉ + ܿ (or ܵ(ݐ) < ∋ ݐ ∀ ,((ݐ)ݒ ,଴ݐ]  ௜ܫ ௡]. For each subintervalݐ =
,௜ݐ]   ௜ାଵ], the above relation in parametric form is expressed asݐ
 
(ݐ)ܵ  < −௜(1ݒ  (ߠ +  (23)  .ߠ௜ାଵݒ 
 
with ݒ௜ = ௜ݐ݉  +  ܿ and ݒ௜ାଵ = ௜ାଵݐ݉  +  ܿ. 
 Then the following theorem holds: 
 
Theorem 5.2 The piecewise ܥଵ rational cubic interpolant ܵ(ݐ), defined over the 
interval [ܽ,ܾ], in (1), preserves the shape of data that lies below the straight line if in 
each subinterval Ii = [ti; ti+1] the following sufficient conditions are satisfies 
 
 ( ௜݂ − (௜ݒ + ௜ߙ  ௜ݒ)  − ௜ାଵݒ + ℎ௜݀௜) < 0,  (21) 
 
 ( ௜݂ାଵ − (௜ାଵݒ ௜ߚ + ௜ାଵݒ)  − ௜ݒ − ℎ௜݀௜ାଵ) < 0. 
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Figure 1: graph of v(t), S(t) and u(t) for data in Table 6.1 
 
 
6. Numerical Example 
The interpolating and constraining data and the parameters ߙ௜ and ߚ௜ , ݅ = 1, 2, 3 are 
given in Table 6.1. It may be verified that both the given interpolating and 
constraining data and the parameters satisfy the relationship (16), (22) and the 
constraint inequalities (21), (24), so the interpolating curve defined by (1) must be 
bounded between u(t) and v(t) Fig. 1 shows that the interpolating curve S(t) is above 
u(t) and below v(t) 
 

Table 6.1 The interpolating data, the constraining data and shape parameters 
 

 
 
 
7. Conclusion 
In this paper, the construction of a rational cubic spline with shape parameters ߙ௜, ߚ௜ 
given, which is monotonic for monotonic data. The sufficient conditions for 
constraining the interpolating curves to be bounded between two given straight lines 
is derived and the approximation properties of the interpolant has been discussed, 
which is useful in the field of engineering. 
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