Contra Harmonic Mean Labeling of Disconnected Graphs

¹S.S. Sandhya, S.Somasundaram² and J. Rajeshni Golda³

Assistant Professor in Mathematics, Sree Ayyappa College for Women, Chunkankadai, Kanyakumari District, Tamilnadu, India. Professor in Mathematics, Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu, India. Assistant Professor in Mathematics, Women's Christian College, Nagercoil Kanyakumari District, Tamilnadu, India.

Abstract

A graph G (V,E) is called a Contra Harmonic mean graph with p vertices and q edges, if it is possible to label the vertices $x \in V$ with distinct element f(x) from 0,1.....q in such a way that when each edge e = uv is labeled with

 $f(e=uv) = \left[\frac{f(u)^2 + f(v)^2}{f(u) + f(v)}\right] \text{ or } \left[\frac{f(u)^2 + f(v)^2}{f(u) + f(v)}\right] \text{ with distinct edge labels. Here f is called a Contra Harmonic mean labeling of G.}$

Keywords: Graph, Contra Harmonic mean labeling, Contra Harmonic mean graphs, Path, Cycle, Comb, etc

1. INTRODUCTION

All graph in this paper are simple, finite, undirected. Let G be a graph with p vertices and q edges. For a detail survey of graph labeling we refer to Gallian [1]. For all other standard terminology and notation we follow Harray [2]. S. Somasundaram and R. Ponraj introduced mean labeling for some standard graphs in 2013. S.S. Sandhya and S. Somasundaram introduced Harmonic mean labeling of graph. We have introduced Contra Harmonic mean labeling in [5].In this paper we investigate the Contra

Harmonic mean labeling behaviour of some disconnected graphs. The following definition are useful for our present study.

Definition 1.1

A graph G (V,E) is called a Contra Harmonic mean graph with p vertices and q edges, if it is possible to label the vertices $x \in V$ with distinct elements f(x) from $0,1,\ldots,q$ in such a way that when each edge e = uv is labeled with $f(e=uv) = \left[\frac{f(u)^2 + f(v)^2}{f(u) + f(v)}\right]$ or $\left[\frac{f(u)^2 + f(v)^2}{f(u) + f(v)}\right]$ with distinct edge labels. Then f is called Contra Harmonic mean labeling of G.

Definition 1.2: The union of two graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ is a graph $G = G_1 \cup G_2$ with vertex set $V = V_1 \cup V_2$ and edge set $E = E_1 \cup E_2$

Definition 1.3: The corona of two graphs G_1 and G_2 is the graph $G = G_1 \odot G_2$ formed by taking one copy of G_1 and $|V(G_1)|$ copies of G_2 where the *i*th vertex of G_1 is adjacent to every vertex in the *i*thcopy of G_2 .

Theorem 1.4: Any Path is a Contra Harmonic mean graph.

Theorem 1.5: Any Cycle is a Contra Harmonic mean graph.

Theorem 1.6: Any Comb is a Contra Harmonic mean graph.

Theorem 1.7: Any Crown is a Contra Harmonic mean graph.

2. MAIN RESULTS

Theorem 2.1: $C_m \cup P_n$ is a Contra Harmonic mean graph ,for m ≥ 3 and n ≥ 1

Proof: Let C_m be the cycle u_1 v_n and P_n be the path v_1 ... v_n

Let $G = C_m \cup P_n$.

Define a function f: V(G) $\rightarrow \{0, 1, \dots, q\}$ by

 $f(u_i) = i-1, \ 1 \le i \le m-1, \ f(u_m) = m$

 $f(v_i) = m + i, 1 \le i \le n$

Then the distinct edge labels are

 $f(u_i u_{i+1}) = i, 1 \le i \le m$

 $f(v_i, v_{i+1}) = m+i, 1 \le i \le n-1$

 $/_{C_m \cup P_n}$ is Contra Harmonic mean graph

Example 2:2 The Contra Harmonic mean labeling of C5UP5 is

Figure 1

Theorem 2.3: $C_m \cup (P_n \odot K_1)$ is a Contra Harmonic mean graph.

Proof:

Let C_m be a cycle with vertices u_1, \ldots, u_m and Let v_1, \ldots, v_n be the path P_n . and let w_i be the vertices which is joined to the vertex v_i , $1 \le i \le n$ of the path P_n . The resultant graph is $P_n \odot K_1$. Let $G = C_m \cup (P_n \odot K_1)$

Define a function $f: V(G) \rightarrow \{0,1...q\}$ by

$$\begin{split} f(u_i) &= i\text{-}1, \ 1 \leq i \leq m\text{-}1 \\ f(u_m) &= m \\ f(v_i) &= m\text{+}2i\text{-}1, \ 1 \leq i \leq n \\ f(w_i) &= m\text{+}2i, \ 1 \leq i \leq n \end{split}$$

Then the distinct edge labels are

$$\begin{split} f(u_{i}u_{i+1}) &= i, \ 1 \leq i \leq m \\ f(v_{i}, v_{i+1}) &= m + 2i, \ 1 \leq i \leq n - 1 \\ f(v_{I}, w_{i}) &= m + 2i - 1, \ 1 \leq i \leq n \end{split}$$

Then f is a Contra Harmonic mean graph of G.

Example 2.4: The Contra Harmonic mean labeling of $C_5 \cup (P_5 \odot K_1)$ is

Theorem 2.5: (C_m⊙K₁)∪P_nis a Contra Harmonic mean graph.

Proof: Let u_1, u_2, \ldots, u_m be a cycle C_m and v_i be the vertex which is joined to the vertex u_i of the cycle C_m , $1 \le i \le m$.

The resultant graph is $C_m \odot K_1$. Let $w_1 w_2 \dots w_n$ be the path P_n

Let $G = (C_m \odot K_1) \cup P_n$.

Define a function

f: V(G)
$$\rightarrow$$
 {0,1,...q} by

$$f(u_i) = 2i-2, 1 \le i \le m-1$$

- $\mathbf{f}(\mathbf{u}_n) = 2\mathbf{m}$
- $f(v_i) = 2i\text{-}1, \ 1 \leq i \leq m$
- $f(w_i) = 2m + i, 1 \le i \le n$

Then the distinct edge labels are

 $f(u_i u_{i+1}) = 2i, 1 \le i \le m$

$$f(u_i v_i) = 2i-1, 1 \le i \le m$$

 $f(w_i \; w_{i+1}) = 2m{+}i, \; 1{\leq}i{\leq}n{-}1$

 $I_{(C_m \odot K_1) \cup P_n \text{ is a Contra Harmonic mean graph}}$

Example 2.6: The Contra Harmonic mean labeling of $(C_6 \odot K_1) \cup P_5$

Figure: 3

Theorem 2:7

 $(C_m \odot K_1) \cup (P_n \odot K_1)$ is a Contra Harmonic mean graph.

Proof: Let $u_1u_2....u_m$ be the cycle C_m and let v_i be the pendent vertex joined to the vertex u_i of $C_m 1 \le i \le m$. The resultant graph is $C_m \odot K_1$. Let $w_1.....w_n$ be the path P_n and t_i be the vertex which is joined to the vertex w_i , $1 \le i \le n$ of the path P_n . The resultant graph is $P_n \odot K_1$.

Let $G = (C_m \odot K_1) \cup (P_n \odot K_1)$.

Define a function f: V(G) \rightarrow { 0,1.....q} by f(u_i) = 2*i*-2, 1≤*i*≤m-1, f(u_n) = 2m, f(v_i) = 2*i*-1, 1≤*i*≤m f(w_i) = 2m+2*i*-1, 1≤*i*≤n f(t_i) = 2m+2*i*, 1≤*i*≤n Then the distinct edge labels are f(u_iu_{i+1}) = 2*i*, 1≤*i*≤m f(u_i v_i) = 2*i*-1, 1≤*i*≤m f(w_iw_{i+1}) = 2m+2*i*, 1≤*i*≤n-1 f(w_it_i) = 2m+2*i*-1, 1≤*i*≤n / (C_m⊙K₁)∪(P_n⊙K₁) is a Contra Harmonic mean graph.

Example: 2.8

The Contra Harmonic mean labeling of $(C_6 \odot K_1) \cup (P_5 \odot K_1)$

Figure: 4

Theorem 2.9: $(C_m \odot K_1) \cup (P_n \odot \overline{K}_2)$ is a Contra Harmonic mean graph.

Proof: Let $u_1 u_2....u_m$ be the cycle C_m and let v_i be the vertex joined to the vertex u_i of $C_m \ 1 \le i \le m$. The resultant graph is $C_m \odot K_1$. Let $w_1....w_n$ be the path P_n and let t_i and s_i be the vertices which are joined to the vertex w_i of path $P_n, 1 \le i \le n$. The resultant graph in $P_n \odot \overline{K_2}$

Let
$$G = (C_m \odot K_1) \cup (P_n \odot K_2)$$

Define f: $V(G) \rightarrow \{0, 1, ..., q\}$ by
 $f(u_i) = 2i \cdot 2, 1 \le i \le m - 1, f(u_m) = 2m$
 $f(v_i) = 2i \cdot 1, 1 \le i \le m$
 $f(w_i) = 2m + 3i \cdot 2, 1 \le i \le n$
 $f(t_i) = 2m + 3i \cdot 1, 1 \le i \le n$
 $f(s_i) = 2m + 3i, 1 \le i \le n$

Then the distinct edge labels are

$$\begin{split} f(u_i \ u_{i+1}) &= 2i, \ 1 \leq i \leq m \\ f(u_i \ v_i) &= 2i\text{-}1, \ 1 \leq i \leq m \\ f(w_i \ w_{i+1}) &= 2m\text{+}3i, \ 1 \leq i \leq n\text{-}1 \\ f(w_i \ t_i) &= 2m\text{+}3i\text{-}2, \ 1 \leq i \leq n \end{split}$$

 $f(w_i s_i) = 2m + 3i - 1, 1 \le i \le n$

 $I_{(C_m \odot K_1) \cup (P_n \odot \overline{K_2})}$ is a Contra Harmonic mean graph of G.

Example 2.10 Contra Harmonic mean labeling of $(C_6 \odot K_1) \cup (P_4 \odot \overline{K_2})$

Theorem 2.11 : $(C_m \odot \overline{K_2}) \cup P_n$ is a Contra Harmonic mean graph

Proof: $u_1u_2...u_mu_1$ be a cycle C_m and let v_{i,w_i} be the vertices that are joined to the vertex $u_i 1 \le i \le m$ of the cycle C_m .

Let $G = (C_m \odot \overline{K}_2) \cup P_n$

Define f: $V(G) \rightarrow \{0, 1 \dots q\}$

by

$$\begin{split} f(u_i) &= 3i\text{-}2, \ 1 \leq i \leq m\text{-}1 \ , f(u_m) = 3m\text{-}1 \\ f(v_i) &= 3i\text{-}3, \ 1 \leq i \leq m \\ f(w_i) &= 3i\text{-}1, \ 1 \leq i \leq m\text{-}1, f(w_m) = 3m \\ f(s_i) &= 3m\text{+}i, \ 1 \leq i \leq n \end{split}$$

Then the distinct edge labels are

 $\begin{aligned} f(u_i \ u_{i+1}) &= 3i, \ 1 \le i \le m-1 \ , f(u_m, u_1) = 3m-1 \\ f(u_i \ v_i) &= 3i-2, \ 1 \le i \le m \\ f(u_i w_i) &= 3i-1, \ 1 \le i \le m-1, \ f(u_m w_m) = 3m \\ f(s_i \ s_{i+1}) &= 3m+i, \ 1 \le i \le n-1 \end{aligned}$

 $(C_m \odot \overline{K_2}) \cup P_n$ is a Contra Harmonic mean graph.

Figure 5

Theorem 2.13($C_m \odot \overline{K_2}$) \cup ($P_n \odot K_1$) is a Contra Harmonic mean graph.

Proof: Let $u_1, u_2, \ldots u_m$ be the cycle C_m . Let vi, w_i be the vertices that are joined to the vertex $u_i, 1 \le i \le m$ of the cycle C_m .

Let $s_1s_2...s_n$ be the path P_n and t_i be the vertex that are joined to the vertex s_i , $1 \le i \le n$ of P_n .

Let $G = (C_m \odot \overline{K_2}) \cup (P_n \odot K_1)$ Define f: $V(G) \rightarrow \{0, 1, 2, \dots, q\}$ by $f(u_i) = 3i \cdot 2, 1 \leq i \leq m \cdot 1, f(u_m) = 3m \cdot 1$ $f(v_i) = 3i \cdot 3, 1 \leq i \leq m$ $f(w_i) = 3i \cdot 1, 1 \leq i \leq m \cdot 1, f(w_m) = 3m$ $f(s_i) = 3m + 2i \cdot 1, 1 \leq i \leq n$ $f(t_i) = 3m + 2i, 1 \leq i \leq n$

Then the distinct edge labels are

 $f(u_{i}u_{i+1}) = 3i, \ 1 \le i \le m-1, f(u_{m}, u_{1}) = 3m-1$ $f(u_{i} v_{i}) = 3i-2, \ 1 \le i \le m$ $f(u_{i}w_{i}) = 3i-1, \ 1 \le i \le m-1, \ f(u_{m}w_{m}) = 3m$

$$f(s_{i}, s_{i+1}) = 3m+2i, \ 1 \le i \le n-1$$

$$f(s_{i}t_{i}) = 3m+2i-1, \ 1 \le i \le n$$

$$/_{(C_{m}} \odot \overline{K}_{2}) \cup (P_{n} \odot K_{1}) \text{ is a Contra Harmonic mean graph}$$

Example : 2.14

The Contra Harmonic mean labeling of $(C_5 \odot \overline{K_2}) \cup (P_6 \odot K_1)$ is

Figure: 7

Theorem: 2.15

Proof: $(C_m \odot \overline{K_2}) \cup (P_n \odot \overline{K_2})$ is a Contra Harmonic mean graph.

Let $u_1 \dots u_m$ be the cycle C_m and let v_i , w_i be the vertices that are joined to vertex u_i $1 \le i \le m$ of C_m . Let $z_1 \dots z_n$ be the path P_n and let s_i , t_i be the vertices that are joined to the vertex z_i of the path P_n $1 \le i \le n$.

Let $G = (C_m \odot \overline{K_2}) \cup (P_n \odot \overline{K_2})$ Define a function f: $V(G) \rightarrow \{0, 1, ..., q\}$ by $f(u_i) = 3i \cdot 2, \ 1 \le i \le m - 1, \ f(u_n) = 3m - 1$ $f(v_i) = 3i \cdot 3, \ 1 \le i \le m$ $f(w_i) = 3i \cdot 1, \ 1 \le i \le m - 1, \ f(u_m) = 3m$ $f(z_i) = 3m + 3i \cdot 2, \ 1 \le i \le n$ $f(s_i) = 3m + 3i \cdot 1, \ 1 \le i \le n$ $f(t_i) = 3m + 3i, \ 1 \le i \le n$

Then the distinct edge labels are

$$\begin{split} f(u_i \ u_{i+1}) &= 3i, \ 1 \leq i \leq m-1, f(u_m \ u_1) = 3m-1 \\ f(u_i \ v_i) &= 3i-2, \ 1 \leq i \leq m \\ f(u_i w_i) &= 3i-1, \ 1 \leq i \leq m-1, \ f(u_i w_i) = 3m \\ f(z_i \ z_{i+1}) &= 3m+3i-2, \ 1 \leq i \leq n \\ f(z_i s_i) &= 3m+3i-2, \ 1 \leq i \leq n \\ f(z_i t_i) &= 3m+3i-1, \ 1 \leq i \leq n \end{split}$$

 $(C_m \odot \overline{K_2}) \cup (P_n \odot \overline{K_2})$ is a Contra Harmonic mean graph.

Example 2.16:

The Contra Harmonic mean labeling of $(C_5 \odot \overline{K_2}) \cup (P_4 \odot \overline{K_2})$

Figure: 8

Theorem 2: 17

 $(C_m \odot \overline{K_2}) \cup (P_n \odot K_3)$ is a Contra Harmonic mean graph.

Proof: Let u_1, \ldots, u_m be a cycle C_m and let v_i, w_i be the vertices joined to the vertex $u_i \ 1 \le i \le m$.

Let $z_1...,z_n$ be the path P_n and let s_i , t_i be the vertex of K_3 that are joined to the vertex z_i of the path $P_n \ 1 \le i \le n$

Let $G = (C_m \odot \overline{K_2}) \cup (P_n \odot K_3)$ Define f: $V(G) \rightarrow \{0, 1, ..., q\}$ by $f(u_i) = 3i \cdot 2 \ 1 \le i \le m - 1$, $f(u_m) = 3m \cdot 1$ $f(v_i) = 3i \cdot 3$, $1 \le i \le m$ $f(w_i) = 3i \cdot 1$, $1 \le i \le m - 1$, $f(w_m) = 3m$ $f(z_i) = 3m + 4i \cdot 3$, $1 \le i \le n$ $f(s_i) = 3m + 4i \cdot 2$, $1 \le i \le n$ $f(t_i) = 3m + 4i \cdot 1$, $1 \le i \le n$

Then the distinct edge labels are

$$\begin{split} f(u_{i}u_{i+1}) &= 3i, \ 1 \leq i \leq m-1 \ , \ f(u_{m} \ u_{1}) = 3m-1 \\ f(u_{i}, v_{i}) &= 3i-2, \ 1 \leq i \leq m \\ f(u_{i}w_{i}) &= 3i-1, \ 1 \leq i \leq m-1, \ f(u_{m}w_{m}) = 3m \\ f(z_{i} \ z_{i+1}) &= 3m+4i, \ 1 \leq i \leq n-1 \\ f(z_{i} \ s_{i}) &= 3m+4i-3, \ 1 \leq i \leq n \\ f(z_{i} \ t_{i}) &= 3m+4i-1, \ 1 \leq i \leq n \\ f(s_{i}t_{i}) &= 3m+4i-2, \ 1 \leq i \leq n \end{split}$$

 $(C_m \odot \overline{K_2}) \cup (P_n \odot K_2)$ is a Contra Harmonic mean graph.

Example 2: 18: The Contra Harmonic mean labeling of $(C_5 \odot \overline{K_2}) \cup (P_4 \odot K_3)$ is

REFERENCES

- [1] Gallian. 2012, A Dynamic Survey of graph labeling. The electronic Journal of Combination 17# DS6.
- [2] Harary. F, 1988, Graph Theory, Narosa publishing House Reading, New Delhi.
- [3] Somasundaram.S, Ponraj.R "Mean Labeling of Graphs', National Academy of Science Letter Volume 26, p210-213.

- [4] Somasundaram.S and S.S. Sandhya S.S 'Harmonic Mean Labeling of Graphs', Journal of Combinatorial Mathematics and Combinatorial Computing. ISB 978-1-910747-7-2 Pg. No. 134 to 136.
- [5] Sandhya S.S, Somasundaram. S and Rajeshni Golda. J" 'Contra Harmonic mean labeling of graphs communicated to Journal of Mathematics Research .
- [6] Sandhya S.S, Somasundaram. S and Rajeshni Golda. J" 'Contra Harmonic mean labeling of Some More graphs' communicated to International Journal of Contemporary Mathematical Science .

S.S. Sandhya, S.Somasundaram and J. Rajeshni Golda