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Abstract 

In Data mining, outlier detection can be treated as a classification problem 

with the availability of training data set with class labels. It is possible to apply 

a classification based outlier detection method if the samples of cancer data set 

available with class information. The general idea of classification-based 

outlier detection method is to train a classification model that can distinguish 

normal data from outliers [7].  The previous work shows that some of the 

classification based outlier detection algorithms provide better sensitivity and 

some others provide better specificity. By combining the better part of these 

classification algorithms, a hybrid classification algorithm can design. This 

work proposed a KNN-DT hybrid classification algorithm and evaluated the 

performance of outlier detection. The results clearly show that the impact of 

such hybridizing significantly improved the overall classification performance 

to a considerable level.  

Keywords: Outlier detection, Hybrid classification, Data mining, Decision 

table, C4.5, KNN KNN-DT, KNN-C4.5. 

 

I.  INTRODUCTION 

Outliers are observations deviated from the rest, which represent the unique 

characteristics of the objects and are very important in applications such as outlier 

detection in cancer datasets. Due to the increase of the dimensionality, the distance 
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between objects may be heavily dominated by noise and may not reflect the exact 

relationship between them. In order to improve the performance of the classification, 

this work proposes a hybrid classification approach using knn and decision tree 

algorithms. 

 

II.  MODELING HYBRID CLASSIFICATION BASED OUTLIER 

DETECTION SYSTEM 

A. Outlier Detection Methods 

A. Supervised, Semi-Supervised, and Unsupervised Methods   
In supervised mode, training dataset is available for normal and outlier classes. Even 

though this approach builds a predicative model, it is difficult to obtain the accurate 

class labels. 

The semi-supervised mode is widely used than supervised because the training dataset 

is available only for normal class. Outliers are the data instances which do not satisfy 

this class.  

In unsupervised mode is widely used due to unavailability of training dataset. Outliers 

are the data instances which are not frequent or closely related to each other. 

B. Statistical Methods, Proximity-Based Methods 
With the assumption of the normalization of data, the Statistical methods are treated 

as the classical one for the detection of outlier.   Proximity-based approaches assume 

that the proximity of an outlier object to its nearest neighbors significantly deviates 

from the proximity of the object to most of the other objects in the data set [7]. 

C. Clustering and Classification Based Methods 
Outlier detection methods in clustering are based on the examination of the relation 

between clusters and objects [7].  But in classification based outlier detection, develop 

a model which distinguishes normal from outliers. 

D. The Model of the Precision and Recall Based Hybrid    Outlier Detection System 
The main idea of this hybrid classification model is as follows: Some classification 

algorithms are capable of identifying benign data in a better manner and some 

algorithms are capable of identifying malignant data (or outlier) in a better manner. So 

to achieve the high classification accuracy, we propose to combine these two 

characteristics of two different classification algorithms. For example, if KNN is 

capable of identifying benign records and DT is capable of identifying the malignant 

records in a better manner, then the resultant class label will be much accurate than 

the above one. 
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The Model of the proposed Hybrid classification  
 Classify the data using algorithm 1 and find the classification labels. Let 

A1 be the set of labels provided by algorithm  which is capable of 

identifying benign records with greater accuracy 

 Classify the data using algorithm 2 and find the classification labels . Let 

A2 be the set of class labels Provided by algorithm  which is capable of 

identifying malignant records with greater accuracy 

 A1= { AB1 , AM1 } where AB1 are the indexes of Benign records and 

AM1 are the indexes of the Malignant records provided by algorithm 1 

 A2= { AB2 , AM2 } where AB2 are the indexes of Benign records and 

AM2 are the indexes of the Malignant records provided by algorithm 2 

 Combine A1 and A2 in such a way to produce A3 = {AB1, AM2}, 

which will has higher accuracy than both A1 and A2. 

 

The following Diagram shows the outline of the precision and recall based hybrid 

outlier detection system that we are going to construct and test in this work. 

 

 

 

Figure 1: The Precision & Recall Based Hybrid Outlier Detection System 
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F. The Used Classification Algorithms 
a)  Decision Table Classifier 

A decision table is a predictive modeling tool that performs the hierarchical 

breakdown of the data, with two attributes at each level of the hierarchy.  

b) K-Nearest Neighbors Classifier 

The working of KNN is as follows: Identify the K nearest neighbors to an input 
instance in the population space and assign the instance to the class the majority of 
these neighbors belong to. The “nearest” measurement refers to the Euclidean 

distance between two instances and calculated with the Euclidean distance between ti 

and tj is 

 

D(ti, tj) = 




n

k
jkik xx

1

2)(
 

Where, n is the number of attributes in each data instance. 

 

 

III.   THE EVALUATION 

The classification algorithm’s performance were tested with "Wisconsin Breast 

Cancer Database " 

Breast cancer dataset 
Breast cancer dataset (Wisconsin Breast Cancer Database) obtained from the UCI 

online machine-learning repository at http://www.ics.uci.edu/~mlearn 

/MLRepository.html  

The Wisconsin breast cancer database (WBCD): The WBCD dataset is summarized in 

Table 1 and consists of 699 instances taken from fine needle aspirates (FNA) of 

human breast tissue. Each instance consists of nine measurements (without 

considering the sample's code number), namely clump thickness, uniformity of cell 

size, uniformity of cell shape, marginal adhesion, single epithelial cell size, bare 

nuclei, bland chromatin, normal nucleoli, and mitoses. The measurements are 

assigned an integer value between 1 and 10, with 1 being the closest to benign and 10 

the most anaplastic. Associated with each sample is its class label, which is either 

benign or malignant. This dataset contains 16 instances with missing attributes' 

values. Since many classification algorithms have discarded these data samples, for 

the ease of comparison, the same way is followed and the remaining 683 samples are 

taken for use. Therefore, the class is distributed with 444 (65.0%) benign samples and 

239 (35.0%) malignant samples (Tan et al 2003). 
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Table1. Summary of the WBCD dataset 

Attribute  Possible values 

Clump thickness Integer 1–10 

Uniformity of cell size Integer 1–10 

Uniformity of cell shape Integer 1–10 

Marginal adhesion Integer 1–10 

Single epithelial cell size Integer 1–10 

Bare nuclei Integer 1–10 

Bland chromatin Integer 1–10 

Normal nucleoli Integer 1–10 

Mitoses Integer 1–10 

Class Benign (65.5%),  

Malignant (34.5%) 

 

The Metrics and Validation Method Used for Performance Evaluation 
The Performance of the selected algorithms are depend on data’s characteristics and it 

is measured with metrics Sensitivity, Specificity, Accuracy, Precision, F_Score, and 

Error Rate. 

A) Confusion Matrix 
The type of classification errors a classifier makes can recorded using  a confusion 
matrix.  

 

Predicted Class  

Positives Negatives Actual Class 

w x Positives 

y z Negatives 

 

Figure 2: A confusion matrix. 

 

The entry of a confusion matrix is as follows: 

 w (True Positives –TP) is the number of positive examples correctly classified  

 x (False Negatives -FN) is the number of positive examples misclassified as 

negative 
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 y (False Positives –FP) is the number of negative examples misclassified as 

positive 

 z (True Negatives –TN) is the number of negative examples correctly classified 

 

B) The Metrics 

Sensitivity/ Recall 
Here, the percentage of sick people who are correctly identified as having the 

condition and the equation is 

FN  TP

TP
)/( Recall ySensitivit


 xww  

 Specificity 
Here, the percentage of healthy people who are correctly identified as not having 

the condition and the equation is 

FP TN

TN
)/(y  Specificit


 zyz  

Accuracy 
Accuracy is treated as the degree of closeness of measurements of a quantity to its 

true value.  

FN  TN  FP  TP

TNTP
)/()(Accuracy 




 zyxwzw  

Precision/ Positive Predictive Value 
The Positive predictive value(PDV, ) is calculated using the following equation :  

FP  TP

TP
)/(Precision  PPV


 yww  

F_Score 
The equation for the f-score is as follows 

RecallPrecision

Recall*Precision
  2F_Score


  

Error Rate 
The equation for the error rate is as follows 

FN  TN  FP  TP

FNFP
 )/()(  rateError 




 zyxwxy  
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C) Validation Methods 
K-fold cross validation is used in this work for measuring  the performance with 

respect to different metrics.  

K-fold Cross-Validation 
In this work, the classifier’s performance is evaluated by selecting k-fold cross 

validation as the main metric. The initial data are randomly partitioned into k mutually 

exclusive subset or folds f1,f2,…,fk, each approximately equal in size. The training and 

testing is performed k times. In the first iteration,  fi is tested against the subsets f2, …, 

fk, which is collectively serve as the training set in order to obtain a first model; the 

second iteration is trained in subsets f1, f3,…, fk and tested on f2; and so no. 

 

IV.  THE RESULTS AND DISCUSSION 

About the Implementation 
The proposed outlier detection software is developed using Matlab version 7.4.0 

(R2007a) and decided to use some of the features of Weka . So, the Mex and Java 

interface of matlab is used to implement this outlier detection software. The standard 

weka implementation of the classification algorithms is used in this work and only 

passed the default parameters while invoking the classifier algorithms. The proposed 

hybrid classification model is developed and the standard fspackage of Matlab is 

incorporated with it. 

In the second plot clearly shows that the benign records are grouped together and form 

a distinct cluster. The red points that are deviating from the black cluster are the 

outliers which signifies the malignant nature of that case.  

 

Figure 3: The Plot of WBDC Data Clearly Showing the Benign Cluster and 

Malignant Outliers 
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The following table lists the performance of the algorithm with respect to different 

metrics. In fact, each value is a average of 10 trials. In each trial we did a 10- fold 

validation. So, each table cell value is the average of 100 separate runs with different 

training and testing data sets. 

 

Table 2: The Performance of  Normal and Proposed Hybrid Classification Algorithm 

Algorithm 
Precision  

% 

F-Score 

% 

Sensitivity 

% 

Specificity 

% 

Accuracy 

 % 

Error Rate 

% 

kNN  96.07 96.66 97.31 92.23 95.57 4.43 

Decision Table  96.12 96.19 96.35 92.51 95.03 4.97 

C4.5 Classifier 96.18 95.82 95.58 92.60 94.53 5.47 

kNN-C4.5 98.13 96.54 95.10 96.43 95.59 4.41 

kNN-DT 98.33 96.75 95.31 96.87 95.85 4.15 

 

Even though dimensionality reduction techniques and feature selection techniques will 

lead to better performance, in our experiments, we didn’t use any dimensionality 

reduction techniques and feature selection techniques. Because, we just want to 

examine the real improvement in performance only due to the hybrid classification 

idea. We have selected two classification algorithms to make this hybrid since one is 

providing better sensitivity and the other is providing better specificity. So we are only 

interested in evaluating the improvement in performance. 

The following bar charts are showing the performance of the algorithms. It clearly 

shows the difference in performance with respect to different metrics. 

The following bar chart shows the performance of the algorithm in terms of Accuracy. 

In this case, accuracy measures the capability of the algorithms to correctly identify 

the normal as well as outliers in the data. As shown in the graph, with respect to 

accuracy, the proposed kNN-DT hybrid algorithm performed well. It means, proposed 

kNN-DT hybrid algorithm is capable of marking normal as well as the outliers 

correctly better than other  algorithms. 
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Figure 4: The Accuracy Chart 
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The following bar chart shows the performance of the algorithm in terms of f-score. In 

this case, f-score measures the capability of the algorithms to correctly identify the 

normal as well as outliers in the data. As shown in the graph, with respect to f-score, 

the proposed kNN-DT hybrid algorithm performed well. It means, proposed kNN-DT 

hybrid algorithm is capable of marking normal as well as the outliers correctly better 

than other algorithms. 
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Figure 5: The F-Score Chart 

 

The following bar chart(fig.6) shows the performance of the algorithm in terms of 

precision. The Positive predictive value(PDV, ) or  Precision is measures the 

capability of the algorithms to correctly identify the positives in the data. As shown in 

the graph, with respect to precision, the proposed kNN-DT hybrid algorithm 

performed well. 
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Figure 6: The Precision Chart 
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Figure 7: The Error Rate Chart 

 

The above bar chart(fig.7) shows the performance of the algorithm in terms of error 

rate. In this case, error rate measures how much the algorithm wrongly identify both 
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the normal as well as outliers in the data. As shown in the graph, with respect to error 

rate, the proposed kNN-DT hybrid algorithm performed well. It means, the lower 

value of error rate signifies that proposed kNN-DT hybrid algorithm  is making less 

error while identifying the malignant as well as outlier data. 

The following bar chart shows the performance of the algorithm in terms of 

specificity. In this case, specificity measures the proportion of normal records, that are 

correctly identified. As shown in the graph, with respect to specificity, the proposed 

kNN-DT hybrid algorithm performed well.  

 

Performance in Terms of Specificity
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Figure 8: The Specificity Chart 

 

The following bar chart shows the performance of the algorithm in terms of sensitivity 

or recall. In this case, sensitivity or recall measures the proportion of actual malignant 

records that are correctly identified as outliers. As shown in the graph, with respect to 

sensitivity or recall, the proposed kNN-DT hybrid algorithm performed little bit poor. 

It doesn’t mean its overall performance is poor – it means, it is performing good in 

identifying the outliers by missing some normal records.  
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Figure 9: The Sensitivity/Recall Chart 

 

The following bar chart shows the time consumed for the classifier. Even though the 

proposed hybrid classifier consumed little bit higher time, it provided good 

improvement with respect to other metrics. So, this slight increase in time can be 

neglected. 
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Performance in Terms of CPU Time
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Figure 10: The CPU Time Chart 

 

V.  CONCLUSION 

We have implemented the hybrid classification based outlier detection algorithm 

under Matlab  and evaluated its performance using different metrics. We have arrived 

significant and comparable results. The table and graphs in the previous section shows 

the overall results.  

In this work, we evaluated the performance of knn and Decision table hybrid classifier 

for outlier detection and the results clearly shows that the impact of hybrid technique 

on the cancer dataset is significantly improve the overall classification performance.  

Further, we may address the possibility of improving the classification algorithm 

using a good distance metric or good neighborhood relationship function and with 

much suitable hybrid classification. Future works may address these issues and 

improve the performance of the outlier detection in cancer data. 
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