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Abstract 

Queueing systems with Bi-level control policy have been studied in the 

literature (Lee et al. 2003,1994 and J.C.Ke 2004). Most of the queueing 

models Bi Level control policy can be analyzed using Decomposition 

property. The objective of this paper are i) to analyze some general bulk 

arrival queueing system with server vacations and early setup time and to 

drive the probability generating functions ii) Study state various performance 

measures and find the optimal values  

Keywords: Setup time, Bi-level, Bulk arrival, working vacations, Restrictive 

Admissibility 

 

I  INTRODUCTION 

The bi-level control policy was first introduced by Lee and Park (1997) for an 

M/G/1queueing system. They have used the decomposition property of vacation 

queues to derive the distribution of the number of units in the system and developed a 

procedure to find the optimal value of (m,N)  that minimizes a linear cost. They have 

shown that the double-threshold policy is more beneficial than the conventional single 

threshold policy. Lee et al., (1998) analyzed MX/M/1 queue with bi-level control and 

obtained the queue length and waiting time distribution. 

Later Lee et al.,(2003) extended Lee and Park (1997) model to a non-Markovian 

batch arrival system with/without server’s vacation .The works mentioned above 

focused  only on reliable servers and do not investigate the cases involving unreliable 
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server with both vacations and early startup. Ke (2004a) considered a bi-level control 

of batch arrival MX/G/1 queueing system in which the system is unreliable and is 

characterized by an early setup and multiple vacations. All these papers used the well 

known decomposition property of vacation queues directly to derive the PGF of the 

stationary queue length distribution.   

Past work regarding queues may be divided into two categories (i) the case of 

controlling the service and (ii) the case of controlling the arrivals. Regarding the 

control policy of service, Yadin and Naor (1963) introduced an N-policy for M/M/1 

queueing system, which turns the server on whenever N (predetermined value) or 

more customers present in the system and turns off the server when the system 

becomes empty. Lee et al., (1994a) successively combined the batch arrival queues 

with N-policy and later Lee and Srinivasan (1989), Lee et al., (1994b and 1995) 

studied the behavioral characteristics of batch arrival queues with N-policy and server 

vacations. But these research works do not involve setup operations. 

In many real world production systems, setup operations are needed in several 

occasions. For example, when the machine changes its production type, the operator 

of the machine changes the tools and adjusts the machine speed. Sometimes, a setup 

operation takes several days and is very costly. One way to reduce the setup cost per 

unit time is to delay the production until some number of raw materials accumulates. 

But when the setup cost is very high, the operator may not need to wait until the 

accumulated items reach the usual single threshold N (i.e.) the sever can start the 

setup operation when m (mN) customers accumulate in the queue. And after the 

setup, if there are less than N customers in the queue, then the server remains dormant 

in the system until the number of customers reaches N. If N (or) more customers are 

in the system, after the setup, the server begins to serve the customers immediately. 

This policy is called bi-level threshold policy (or) (m, N) policy. This policy is more 

general than the usual (N, N) policy in which the server starts a setup when N 

customers have piled up in the queue and then starts his service as soon as the setup is 

complete.  

In the literature of queueing, most of the papers deal with the queueing system 

wherein the service stations are reliable (i.e.) do not fail. However in practice, we 

often meet the case where the service station may fail and can be repaired. The 

performance of the system may be heavily affected by the server break downs and 

limited repair capacity. On such situations queueing system with unreliable service 

stations are worth to investigate from performance prediction view point.  

Regarding the control policy of arrivals many authors (Rue and Roshen Shine, 1981; 

Netus, 1984 and Stidham, 1985) deal with the policy, where not all arriving batches 

are allowed to join the system at all times. Such restrictions may be necessary in many 
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real life situations, particularly in the over saturated queue with arrivals occurring 

faster than the departures. 

Ke and Pearn (2004) discussed the optimal management policy for heterogeneous 

arrival queueing systems with server breakdown and multiple vacations for an M/M/1 

queue, and derived the system size distribution and employed the PGF to obtain the 

system characteristics. But the concept of heterogeneous arrivals is not combined with 

the double threshold policy, batch arrival queues under server breakdowns and 

vacations in literature. 

In this Chapter, batch arrival Markovian queueing systems along with server 

breakdowns, bi-level threshold policy for service and restricted admissibility policy 

for arrivals are analyzed under single. The PGF of the system size is obtained through 

the Chapman-Kolmogorov balanced equations satisfied by the steady state system 

size probabilities. The PGF is presented in closed form so that various performance 

measures can be calculated easily. A cost model and a procedure to find the optimal 

values of the decision variables m and N that minimize the linear average cost are 

developed.  

 

II  MODEL DESCRIPTION 

Customers arrive in batches in accordance with the time homogeneous Poisson 

process with group arrival rate  . The batch size X is a random variable with 

probability distribution Pr(X = k) = gk,k=1,2,3,…(i.e) the probability that a batch of k 

units, arrive in an infinitesimal interval (t, t+h) is  gk+o(h).Not all arriving batches 

are allowed to join the system at all times. The probability that an arriving batch is 

allowed to join the system varies according to the system state which falls into one of 

the 3-categories namely idle or busy or break down period. r1 (0  r1  1) denotes the 

probability that an arriving batch  is  allowed  to  join  the  system  while  the  server  

is  idle  and  ri (i = 2, 3) (0  ri  1) respectively denotes the probability with which an 

arriving batch joins the system during the  busy and break down periods of the server. 

The customers who arrive and join the system form a single waiting line based on the 

order of the batches. It is further assumed that the customers with in a batch are pre-

ordered for service. The customer is served one by one according to the order in the 

queue. A cycle starts whenever the system empties; the server is deactivated and 

leaves the system for a vacation of random length V, following an exponential 

distribution of parameter .After returning from the vacation, if the server finds m 

(or) more customers in the system, then the server immediately starts a setup 

operation of random length D. Otherwise the server joins the system and remains idle 

in the system until the system size reaches atleast m and then starts the setup work 
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(i.e.) single vacation policy is adopted. The period during which the server remains 

idle in the system before starting the setup work is called buildup period. The setup 

time is assumed to be an exponentially distributed random variable with mean (1/). 

At the end of the setup period, if the queue length is greater than or equal to N, then 

the server begins to serve the customers, one at a time. Otherwise the server remains 

idle (dormant) in the system waiting for the queue length to reach atleast N, to start 

the service. The service time of each customer is an independent and identically 

distributed random variable, following exponential distribution (1 – et). 

The server is subject to break downs at any time while working, with Poisson rate . 

Whenever the system fails, the server is sent immediately for repair at a repair facility, 

where the repair time is independent and identically distributed random variable Br 

following an exponential distribution (1 – et). The customer, who is just being 

served when the server breakdown, joins the head of the waiting line and resumes the 

service as soon as the server returns from the repair facility.  This type of service 

continues until the system becomes empty again. Thus vacation period, buildup 

period, setup period and dormant period together represent an idle period and the sum 

of busy period and the break down period gives the completion period. Thus an idle 

period and completion period contribute a cycle. This model is denoted by 

MX
i(m,N)/M/1/BD/SV in which BD denotes breakdown and SV denotes single 

vacation. The control policy adopted for service is called (m,N) policy (double 

threshold policy or bi-level policy).  In this model, the first threshold m, is used to 

control the starting condition of a setup operation, and the second threshold N is used 

to control the starting condition of service. If m = N, the model becomes the usual 

setup time queueing model with N-policy and vacations. It is also assumed that all the 

stochastic processes involved in the model are independent of each other.  

To derive the PGF of the system size distribution the following notations are used to 

write the steady state system size equations. 

m, N : Bi-level thresholds 

 : group arrival rate  

X : Group size random variable 

Pr (x = k) : gk    (k  1) 

X(z) : 


1k

k
k z g  the PGF of  X 
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gn
(i)  :     i-fold convolution of gn’s with itself, where  

       gn
(0) = 1 ,     if  n = 0    

               = 0 ,    if   n > 0.                                                                      

ri (i=1 to 3) :     The probability that the arriving batch is allowed to 

join the system while the server is in idle (buildup, 

setup, dormant and vacation) busy and in breakdown 

state respectively. 

i =ri i = 1,2,3 : The probability that the arriving batch of size i, joins 

the system while the server is idle (buildup, setup, 

dormant and vacation) busy and in break down state 

respectively. 

N(t) : The number of customers in the system at time t, 

including the one in service. 

Let μ, ,  and  respectively denote the  parameters of the exponential distributions 

of the random variables namely service time (S), vacation time (V), setup time (D) 

and repair time (Br). The Laplace Stieltes transforms of the distributions of the 

random variables respectively are given by : 

       S*() = μ/μ+;  )(V   =  /(+)

 

; )(D   =  / (+)

  

and  )(Br   =  / (+). 

The server’s states at time t are denoted by the random variable. 

            = 0 if the server is vacation;1 if the server is bulid up; 2 if the server is 

setup;3 if the server is dormant;  4 if the server is busy ; 5 if the server is breakdown   

The probability that there are n customers in the system and the server is in vacation, 

buildup, setup, dormant, busy and in break down states respectively at time t are 

defined by: 

Qn(t) = Pr (N(t) = n,  = 0) n  0 

Rn(t) = Pr (N(t) = n,   = 1) 0  n  m1 

Dn(t) = Pr (N(t) = n,  = 2),   n  m 

Un(t) = Pr (N(t) = n,  = 3),   m  n  N–1  

Pn(t) = Pr (N(t) = n,  = 4),   n  1 

Bn(t) = Pr (N(t) = n,  = 5),   n  1.  
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Then (N(t), ) follows a Markov process. 

Further let Qn, Rn, Dn, Un, Pn and Bn denote the respective steady state probabilities 

(independent of time t) are given by: 

(i.e)  Qn = 
n

t
limQ (t)


;   Rn = 
n

t
lim (t)R


;  Dn = 
n

t
lim (t)D


; Un = 
n

t
lim (t)U


;Pn = 
n

t
lim (t)P


; 

         Bn = 
n

t
lim (t)B


. 

 

III THE SYSTEM SIZE DISTRIBUTIONS: 

Observing the changes of the states during the interval (t,t+ t) at any time t, the 

forward set of Kolmogrov equations satisfied by the steady state probabilities are 

given by: 

(1 + ) Q0 =  P1                 (1)  

(1 + ) Qn = 1 ,g Q k

n

1k

kn


  n  1              (2) 

1 R0 =  Q0                 (3)  

1 Rn =  Qn + 1 ,g R k

n

1k

kn


  1  n  m1                       (4) 

(1 + ) Dm = 1 k

m

1k

km g R 


  +  Qm                          (5) 

(1 + ) Dn = 1 k

n

1mnk

kn g R 


  + 1 k

mn

1k

kn g D 




  +  Qn,   n  m+1         (6) 

1 Um =  Dm                  (7) 

1 Un =  Dn + 1 n k

1

 U  g
n m

k

k







  m+1  n  N1                        (8) 

( +  + ) P1 =  B1 +  P2                           (9) 

(2 +  + ) Pn =  Bn +  Pn+1 + 2 






1n

1k

knP gk,   2 n  N – 1              (10)  
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(2 +  + ) Pn =  Bn +  Pn+1 + 2 






1n

1k

knP gk +  Dn + 1 






mn

1Nnk

knU gk , n  N      (11) 

(3 + ) B1 =  P1                         (12) 

(3 + ) Bn =  Pn +  3 






1n

1k

knB gk ,  n  2                                   (13) 

 

IV PROBABILITY GENERATING FUNCTIONS(PGFs): 

To obtain the system size distribution of the model, the following partial PGF’s of Rn, 

Dn, Un, Pn and Bn are defined.  

 R(z) =  




1m

0n

n
n z R ; D(z) = 



 n

n

n=m

 D  z  

 U(z) = 




1N

mn

n
n z U ; Pw(z) = 



 n

n

n=1

 P  z                     (14) 

 Q(z) = 


 n

n

n=0

 Q  z  and B(z) = 


1n

n
n z B   

For this we list the partial generating functions corresponding to different system 

state. 

Q(z)   =   
 
 
 

1

X
1 1

X

1- V *(w (z))
μP

w (z)
; R(z)   =    μP1(z) 

D(z)   =  (P1 / ) 
 * 1

XD (w (z))





  (z) )z(w   ))z(w(V 1

X
1
X

 ‘ 
U(z) = P1 

S(z) 

 

where  1

Xw (z)   =  1(1 – X(z)) 

 

 

To calculate the total PGF PS
(m,n)(z), we first calculate the partial generating function 

of the system size when the server is idle(PI(z)) ; PI (z)    = Q(z) + R(z) + D(z) + U(z) 
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     ψ  ψ z
1 * 1

* 1 1 sX X
I X X1 1

X X

1- V *(w (z)) 1-D (w (z))
P z V (w (z))  - w (z) (z) + (z)+

w (z) w (z)


     
    

     
1  =  μP

  

    
 

 (i.e)     PI(z)  =  μP1IS(z) 

where S(z) = 
 
 
 

* 1 * 1
* 1 SX X

X1

X

1 - V (w (z)) D (w (z)) 
 + D (w (z)) ψ(z) + (z)

w (z)
                        

Pw(z) + B(z)  =   * 3

r X w1 + (α / β) B  (w (z))  P (z)
                                        

 

Thus the total PGF of the system size is given by; 

PS
(m,N)(z)   =   P(z) + Pw(z) + B(z) 

 

ψ 
  

     
  

 
 

* 1 * 1
1 * 1 sX X

1 X X1

X

w 2 * 3

X r X

1 - D (w (z)) V (w (z))
-zμ P w (z)  + D (w (z)) (z) + (z)

w (z)
P (z) =

μ(z - 1) + z w (z) + α (1 - B (w (z)))
        (15) 

B(z)   = * 3

r X w

α
B (w (z))P (z)

β    

 

The following identities are used to calculate the system size probabilities: 

a. 


 
 
 

1

X

1z  1
X

1- V *(w (z))
lim =E(V)

w (z)
 

b. 


 
 
 

1 1

X X

1z  1
X

1- V *(w (z))D*(w (z))
lim =E(D)+E(V)

w (z)
         (16)

 

c.  
   

 

1

X 1

br2 * 3z  1
23X r X

-w (z) ρ
lim =

1-ρμ(z - 1) + z w (z) + α (1 - B (w (z)))
  

Where  br

23 2 3ρ =ρ +ρ (α / β)   and 
λ1

1ρ = E(X)
μ

 
 
 
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V  PERFORMANCE MEASURES 

In this section, the expressions for the steady state probabilities are obtained.  Let the 

steady state syatem size probabilities Pv, Pbuild, Psetup, Pdor, Pbusy PI and PBr denote the 

probability that the server is in vacation, buildup, setup, dormant, busy and in 

breakdown state respectively.   

       PV       =    ( P1 / )  

       Pbuild            =   
ψ

λ

m-1

n
1

n=0 1

μP  

  

 

        Psetup  =  ( P1 / ) 

         Pdor              =   P1 

SN-1
n

n=m 1

 
λ


  

          PI  =    PV+Psetup+Pdor+Pbulid  

          PI   =   μP1dS (m ,N) 

where dS (m ,N)  = 1/η+1/γ+ ψ
Sm-1 N-1
n

n s

n=0 n=m 1

+ I (1)
λ


   

 Pbusy   =     1 1
Sbr

23

μP  ρ
 d (m,N)

1-  ρ
                                                  (17) 

and  PBr             =  α/β Pbusy 

 

Thus the normalizing condition implies, 

S

(m,N)P (1)= PI+Pbusy+PBr = 1  

 1  =    μP1dS(m,N)+ 1 1
Sbr

23

μP  ρ
d (m,N)

1-ρ
+ α/β Pbusy    

     =   
 
 
 

1
1 S br

23

ρα
μPd (m,N) 1+(1+ )

β 1-ρ
    

                 =   
 
 
 

br br

23 1
1 S br

23

1-ρ +ρ
μP  d (m,N) 

1-ρ
 

   i.e.,   1 =   1 SμPd (m, N)

R
                                                             

         P1 = 
S

R

d (m, N)
                                                             (18) 
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where   R = 
br

23

br br

23 1

1 - ρ

((1 - ρ ) + ρ )
 with   i  =  (i / ) EX  ;  i = 1, 2, 3, . . .  

 br
1  = 1 (1 +( / )) and   

br
23   =  2 + 3 ( / ) 

Thus, Pbusy = 1

br br

23 1

ρ

(1 - (ρ  - ρ ))
                (from equation 17 )                 

 

By substituting for   P1 from equation (18) the equation (PS
(m,N)(z)) can be written as 

)z(PS
N) ,m(  

= R
    

  

 
 
 
 
 

1 * 3

X r X

2 3 * 3

X X r X

z w (z) 1 + (α / β) B  w (z)  
1 - 

μ (z - 1) + z w (z) + (α / β)  w (z) B  w (z)

 

)1(

)(

R

R

I
zI

      (19)

 

where S(z) = 
 
 
 

* 1 * 1
* 1 SX X

X1

X

1 - V (w (z)) D (w (z)) 
 + D (w (z)) ψ(z) + (z)

w (z)
 

 

VI  DECOMPOSITION PROPERTY 

Equation (19) implies that under the condition  
br
23  < 1; the total PGF of the system 

size probabilities is the product of the PGF of two random variables one of which is  

X
iM /M/1/BD

P (z)
 
=  

br

23

br br

23 1

(1 - ρ )

(1 - (ρ  - ρ ))

  

 

   
   

   
  
  

   

1 * 3

X r X

2 3 * 3

X X r X

α
z w (z) 1 +  B  w (z)  

β
1 - 

α
μ (z - 1) + z w (z) +  w (z) B  w (z)

β

 

This gives the PGF of the system size for the batch arrival / /1/X
iM M BD  queueing 

model with heterogeneous arrival and unreliable server without (m,N) policy and 

without vacation and  (z) = S

S

Ι  (z)

Ι  (1)
  gives the PGF of the conditional system size 

distribution during the server idle period (vacation + buildup + setup + dormant). 
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VII  EXPECTED SYSTEM SIZE 

In this section, the mean system sizes when the server is in different states are 

calculated. Let  LV, Lbuild, Lsetup, Ldor, Lbusy and LBr denote the expected system size 

when the server is in vacation, buildup, setup, dormant, busy and breakdown state 

respectively.  

To calculate the mean system size the following identities are used. 

a. λ
1 2

X

1

X z=1

1- V *(w (z))d V
=  E(X)E

dz w (z) 2

   
   

  
 

b. 
1 1

X X

1

X z=1

1- V *(w (z))D*(w (z))d
  =

dz w (z)

 
 
 

1E(X)  2 2(ED  / 2) + ED EV + (EV  / 2)
     

  (20)            
 

c. 
 

1

X

2 * 3

X r X
z=1

-w (z)d

dz μ(z - 1) + z w (z) + α (1 - B (w (z)))

 
 
  
  

        

  
 2λ λ λ 2 br

1 1 3 r 23

2 br 2

23

μE(X(X-1))+2  E(X)(α E(X))  (E (B ) / 2) + μ ρ

2μ (1-ρ )
  

Then   

LV = 
dz

d
(Q(z))z=1 =  P1 1 EX (E(V2) / 2) 

Lbuild = 
dz

d
(R(z)z=1 =  P1 ψ

m-1

n

n=0

 n (1 / 1) 

Lsetup = 
dz

d
(D(z))z=1 = P1 1 E(X)   ψ2(E(D ) / 2) + E(D) E(V) + (1)  

Ldor = 
dz

d
(U(z)z=1 =  P1 

N-1
S

n

n=m

 n φ (1 / 1) 

LBr = 
dz

d
(B(z))z=1 = 




 busy 3 busy[L  + λ  (E(X) / β) P ]     and  

Lbusy = 
dz

d
(Pw(z))z=1  
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= 




1 S
busy 1br 2

23

μ P  d (m, N)
P  +  λ  μ E(X)(X-1)

2 (μ (1 - ρ ))
     

  λ λ 
2 2 br

1 3 r 23+ 2  E(X)(α  E(X) ) (E(B ) / 2) + μ ρ  1
1 Sbr

23

ρ
μ P   (m, N)

(1 - ρ )


 


l  

where  l S(m, N) = l 0+ 1 E(X) E(D) (1) + 
ψ

λ

m-1

n

n=0 1

n 
  + 

λ

N-1

n

n=m 1

n φ
 

              (21)

 

with  l 0 = 1E(X)  2 2(E(D ) / 2)+E(D) E(V)+(E(V ) / 2)
                                       (22)

 

Let LS(m,N) denote the expected system size of X

i(m,N)M /M/1/ SV /BD  queueing 

system under consideration. Then LS(m,N)  =   LV + Lbuild + Lsetup + Ldor  

+ Lbusy + LBr   Implies LS (m,N)  =  S

S

 (m, N)

d  (m, N)

l
 + L1                                              (23) 

where  L1     =   
br br

23 1

1

(1 - (ρ  - ρ ))

λ λ λ 
 
 

2 2
br 1 1 3
1 br

23

E(X(X-1))E(H)+ (E(X )E(H )
ρ +

2 (1-ρ )
   (24) 

with       E(H)  = (1 / ) (1 + ( / ))   =   ES (1 + ( / )) 

 
and        E(H2) =  E Br2 E(S) (1 + 3 – 2) +E(S2) (1 +( / )) [(2/ 3) + ( / )]  

L1 gives the mean system size of classical X

iM /M/1/BD queueing model with 

unreliable server under restricted admissibility without vacation and without (m,N) 

policy. 

 

 

VIII OTHER SYSTEM CHARACTERISTICS: 

Busy period: The busy period begins, when the system size becomes at least N (soon 

after the set up work (or) at the end of the dormant period) and the server starts 

serving the customers and it ends, when the system next becomes empty and the 

server leaves for a vacation. 
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Let E(cycle), E(Busy) and E(I) denote the expected length of cycle, busy period and 

expected idle period. Then the long run fraction of time that the server is in set up 

state implies, 

 (i) 
set 1

E(D)
P   =   =μPE(D) ,     which gives

E(cycle)    

 

1

1
E(cycle)  =   

μP
 

Similarly, 

 

(ii)

      

 E Busy

E(cycle)
busyP

           implies, 

 1
busy s br

23

ρ
E(Busy) =P E(Cycle) = d (m,N)

(1-ρ )     (from equation 17) 

and 

(iii)       sE(idle) =PE(cycle) = d (m,N)       follow by substituting for PI I   
 

Let sE(w )  denote the expected waiting time in the system. Then the Little’s formula 

implies 

(iv)  
λ

s

s

a

L (m,N)
E(w ) =

E(X)
 

where aλ  denote the actual arrival rate into the system which is given by,  

λ λ λ λa 1 2 busy 3 Br  =  ( rP + r P + r P )I  
=  λ 1

1 2 3 br

23

ρα
R(r +(r +r ( )))

β (1-ρ )
 

 

IX  OPTIMAL MANAGEMENT POLICY: 

In this section, the optimal values of m and N that minimize a linear cost function are 

obtained. To do this, the cost structure that has been widely used in the literature is 

employed (refer Yadin and Naor (1963), Ke (2003b), and Armuganathan and 

Jayakumar (2005)). 

yC ( start up cost per cycle),Cbuild (cost per unit time for keeping the server idle 

(buildup)),Ch  (holding cost per customer per unit time),Csetup(server set up cost per 

unit time for the preparatory work of the  server before starting the service),Cdor 

(Server standby cost per unit time.),Cbusy(Cost per unit time for keeping the server on 
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and in operation.),CV(Reward per unit time due to vacation.),CBr( Breakdown cost per 

unit time for a failed server) 

Let S

CT (m, N) denote the total average cost per unit time for the system. Then 

S

CT (m, N)=
yC

E(cycle)
 + Ch L

S(m,N) + Cbuild Pbuild + Csetup Psetup + Cdor Pdor  

  + Cbusy Pbusy – CV PV+CdorPdor            (25) 

Substituting for the system performances and rearranging the terms, S

CT (m, N) Can be 

written as, 

S

CT (m, N) = 
λ λ

S SN-1 N-1
S sn n

S dor h 1

n=m n=ms 1 1

n 1
A  + z (m) + C  R   + C       + A

d (m,N)

  
 
 

   

where  S

1A
   

= (Cbusy + 
α

β
 Cbr)  Pbusy + Ch L1   ,

sA =R (Cy + Cset E(D) – CV E(V) + 

Ch L0 

and  SZ (m)
 
= (R Cbuid + Ch 1 E(X) E(D)) 

ψ

λ

m-1

n

n=0 1

  + Ch 


 

1m

0n 1

n  
 n

 

 

and 0 1,Ll as in equations (22) and (24) 

In order to find the optimal control values ( m , N ) that minimize S

CT  (m, N), a two 

dimensional search over the non-negative integer space must be made. Due to the 

mathematical complexity it is difficult to prove the convexity or unimodality of the 

cost functions S

CT (m,N). This following the  concept of the dynamic optimization  

(due to Bellman 1957, Ke 2001, 2003b and Lee and Park 1997) we consider the 

procedure that make it possible to calculate the optimal thresholds ( * *m , N ). 

 Let J (m, k) =  



k

mi

i   ;   M (m, k) =  
k

S

i

i=m

 i   

then   S

CT (m, k+1) – S

CT (m, k)   =   
λ

S

k
S

1 S S

H (m,k)
 d  (m, k +1) d  (m, k)

       (26) 

where SH (m,k)    = Ch (k
S

ml



Sk-1
n

n=m 1

+ (k -n) )
λ

+ R Cdor
S

ml  – (A + SZ (m) )   (27) 
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with   S

ml      
= E(D) + E(V) + 



 

1m

0n 1

n  

The equation (26) implies, for a given m, the sign of SH (m,k) determines whether S

CT

(m, k) increases (or) decreases w.r.t. k. Let n be the first k for which SH (m,k)>0.Then 

SH (m,n +1)   =  SH (m,n)  + Ch 
k

S S

m i

i=m

 +  l 
 
 
 

  > 0 implies S

CT (m, k)  >  S

CT (m, n) for  

k > n.  

This means that for a given m, the optimal value N (m) of N is given by the first k for 

which SH (m,k)> 0 and that, once S

CT (m, N(m)) increases with respect to N, it keeps 

on increasing thereafter. Therefore for a given m, S

CT (m,N(m)) is conditionally 

unimodel and thereby N (m) conditionally optimal.  

 Thus  N (m)  =  min {k  1 / SH (m,k)  > 0},                      (28) 

where  SH (m,k)  is given as in equation (27)          

 

Therefore for each m, S

CT (m, N) has a relative minimum value at (m, N (m)).  Thus 

the pair (m, N (m)) gives the relative optimal policy for a given m. Though it is 

difficult to prove mathematically that S

CT (m, N) is convex or unimodular the 

computer experiments show that, the expected cost function is convex. Thus the 

optimal (m*, N ) can be obtained by using the following algorithm. 

 

CONCLUSION 

A Bulk arrival, unreliable server with early setup and single vacation has been 

analyzed using P.G.F. This method works efficiently the steady state probabilities of 

the model considered. Further various performance measures and optimal 

management policy are derived and particular cases are also deduced. This is a part of 

the research work carried out to analyze breakdown queueing models with early setup 

and single vacation. 
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