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Abstract 

We provide a polynomial time combinatorial algorithm that computes the 

weighted coloring number and the corresponding colorings for fuzzy circular 

interval graphs. The algorithm reduces the problem to the case of circular 

interval graphs, then making use of a coloring algorithm . 

We also show that the stable set polytopes of fuzzy circular interval graphs 

have the integer decomposition property. 

Keywords: Interval graph, Weighted coloring, Decomposition property, 
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INTRODUCTION 

A weighted k coloringof a graph G with weights w: D (G) → N0 is a multiset of stable 

set S1, . . . Sk ⊆ D(G) such that each vertex v ∈ D(G) is contained in w(v) many of 

these stable sets. The weighted coloring number χw(G) is the smallest k such that there 

exist stable sets as above. The problem of bounding and computing the weighted 

coloring number of graphs is a classical topic in combinatorics and graph theory and, 

for the class of quasi-line graphs and more specifically fuzzy circular interval graphs, 

has received a lot of attention recently. 
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From a polyhedral perspective, the weighted coloring problem has an interesting 

connection to the integer decomposition in the stable set polytopes of graphs. A 

polyhedron P ⊆ Rn has the integer decomposition property, if each integer vector z ∈ 

Zn that is contained in k · P for some k ∈ N can be decomposed into k integer vectors 

of P, i.e. there exist integer vectors z1, . . . , zk ∈ P  such that 
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The vectors kzzz ,.......,2,1 are called a k integer decomposition of z in P. There is a one 

to one correspondence between weighted colorings of a graph with weights w and 

integer decompositions of w in its stable set polytope. Moreover, if a stable set 

polytope has the integer decomposition property, and the maximum weighted stable 

set (MWSS) problem can be solved in polynomial time, then the weighted coloring 

number can be computed in polynomial time, via the equivalence of separation and 

optimization [6]. 

A graph is quasi-line if the neighborhood of each of its vertices is the union of two 

cliques. Chudnovsky and Seymor [2] provided a structural result that states that a 

connected quasi-line graph is a fuzzy circular interval graph or it is the composition of 

fuzzy linear interval strips with a collection of disjoint cliques. In particular line-

graphs are quasi-line, and thus the weighted coloring problem for quasi-line graphs 

subsumes the NP-complete edge-coloring problem. 

In this paper, we consider the subclass of fuzzy circular interval graphs and show that 

the weighted coloring problem can be solved in polynomial time. We will present two 

approaches to the problem: a purely combinatorial approach and a polyhedral 

approach based on linear programming. Both approaches work by reduction to 

circular interval graphs, exploiting their properties [12,5]. 

Our contribution. We present an efficient combinatorial algorithm to not only 

compute the coloring number, but also an optimal weighted coloring for fuzzy 

circular interval graphs. For a fuzzy circular interval graph G, it computes the 

weighted coloring number alone in time 

 )()(
3

wsizeGvo . 

Given the coloring number, it computes an optimal weighted coloring in time 

 .)()(
5
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Here size(w) denotes the binary encoding length of w. The algorithm is based on a 

reduction to circular interval graphs using an algorithm for maximum b-matching and 
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an algorithm of Gijswijt [5] to solve the weighted coloring problem on circular 

interval graphs. Our algorithm requires a so-called representation of the fuzzy circular 

interval graph as input. Such a representation can be computed in time  

   53
)()(.)( GvoGEGvo  ; see [13]. 

We also show that the stable set polytopes of fuzzy circular interval graphs have the 

integer decomposition property, which leads to a linear programming based approach 

to compute the weighted coloring number. 

The organization of this paper is as follows. In Section 1.1, we review important 

structural properties of fuzzy circular interval graphs that will be exploited by our 

algorithm. In Section 2, we present our combinatorial coloring algorithm. Finally in 

Section 3 we elaborate in more detail on the relation between weighted colorings and 

integer decompositions and prove the integer decomposition property for the stable 

set polytope of fuzzy circular interval graphs. 

 

1.1 The structure of circular interval graphs 

 Given a graph G and a set of nodes S ⊆ D (G), a node d ∈ D (G) is said to be S-

complete, if d is adjacent to every node of S. If d is adjacent to none of the nodes of S, 

d is said to be S-anticomplete. Given a node d ∈ V(G), we define the neighborhood of 

d as 

  )(,:)(:)( GEduGDudNG  . 

Circular interval graphs are graphs G that can be obtained with the following 

construction. Let D (G) be a subset of a circle C. Further take a set I of intervals of the 

circle C. The set of edges E(G) is defined as follows. Two vertices are adjacent if and 

only if they are contained in a common interval of I. 

The pair (D , I) completely describes a circular interval graph and is called a 

representation of G. These representations can be computed in linear time [3,9,7]. Fig. 

1 shows an example for a circular interval graph. 

Circular interval graphs can be colored efficiently. There is a combinatorial algorithm 

by Gijswijt [5] via integer decompositions for the stable set polytope of circular 

interval graphs. His result is the following. 



254 Dr. K. Kalaiarasi  and R.Divya 

 

Fig. 1.  A circular interval graph with its representation. 

 

Theorem 1 ([5]). Given a circular interval graph G with weights w, for every d ∈ N 

we can decide if a weighted k coloring of (G, w) exists in time O (|S (G)|3). 

Proof 

A weighted d coloring can be computed in time  )()(
3

wsizeGSo   . The number of 

different stable sets in the coloring is bounded by O (|S (G)|).  

Fuzzy circular interval graphs [2] provide a generalization of the former class. They 

can be characterized as follows. A graph G is a fuzzy circular interval graph if there is 

a map Φ from S(G) to a circle C and a set I of intervals of C, none including another, 

such that no point of C is an endpoint of more than one interval so that: 

 if three vertices a,b and c are adjacent, then )(),( ba   and )(c belong to a 

common interval; 

 if  two vertices a, b and c belong to the same interval, which is not an interval 

with endpoints  )(),( ba  & )(c , then they are adjacent. 

 For an interval [p, q,r] ∈ I, if both sets of preimages )(:),(: 11 qBpA     and 

C:= )(1 r  are nonempty, (A, B)& (B,C)  is called a fuzzy pair. 

 Note that by definition, both A ,B and C are cliques, but adjacencies between nodes 

of A,B & C can be arbitrary. Fuzzy pairs have another structural property that will be 

crucial later for our construction. Every node )(\)();(\)( CBGSbBAGsa  is 

either A-complete or A-anticomplete. Similarly, a  is either B-complete or B-

anticomplete  and  , b  is either C-complete or C-anticomplete   

Analogous to circular interval graphs, the pair ( , I) is called a representation of G. It 
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completely defines all adjacencies, except for those of fuzzy pairs. Fig. 2 shows an 

example for a fuzzy circular interval graph and its representation. We remark that the 

definition of fuzzy pairs relies on the interval set I, and hence are dependent on a 

representation. Given two different representations of the same graph, the fuzzy pairs 

might differ. In the sequel when we speak of fuzzy pairs, we implicitly assume that a 

representation is given. Every fuzzy circular interval graph has a representation whose 

number of intervals is bounded by O (|S (G)|): the fact that no interval is allowed to 

include another limits the number of irredundant intervals. From now on we assume 

that the number of intervals is limited by O (|S (G)|). Representations for fuzzy 

circular interval graphs can be computed efficiently. 

 

Theorem 2 ([13]). Given a graph G, one can decide whether G is a fuzzy circular 

interval graph and compute a suitable representation in time    )(.)(
3

GEGSo . 

Proof 

The coloring algorithm presented later will reduce to the case of circular interval 

graphs to make use of Gijswijt’s coloring algorithm. As fuzzy pairs are what 

distinguishes circular interval graphs from fuzzy circular interval graphs, they play an 

essential role in the transformation. A fuzzy pair (A, B) & (C,D) is called nontrivial if 

A∪B and C∪D contains an induced C4 subgraph, i.e. there are four nodes such that 

their 

 

 

Fig. 2.  A fuzzy circular interval graph with its representation.  Here 

Aaaaa  )()()()( 4321  ,  Bbb  )()( 21  ,  Ddc  )()(  ,  Ee )( ,  

Ff )(  and Gg )(  
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Induced subgraph is a cycle. It is called trivial otherwise. A crucial observation is that 

fuzzy circular interval graphs whose fuzzy pairs are all trivial are actually circular 

interval graphs; see, e.g. [4]. 

Lemma 1. Given a fuzzy circular interval graph G and a representation, if every fuzzy 

pair of G w.r.t. that representation is trivial, then G is a circular interval graph. 

 

2. THE COLORING ALGORITHM 

Our coloring algorithm for fuzzy circular interval graphs reduces to the case of 

circular interval graphs by transforming the input graph G* and its weights w to a 

circular interval graph G** with weights w** such that the coloring number is 

preserved, i.e. χw*(G*) = χw** (G**). Then it applies Gijswijt’s algorithm, see 

Theorem 1, to obtain a coloring of G**, which finally is transformed to a coloring of 

G*. 

Lemma 1 suggests the following approach for the reduction of a fuzzy circular 

interval graph G: replace every nontrivial fuzzy pair in G with a trivial one in such a 

way that the weighted coloring number is preserved. This is done in several iterations, 

replacing the nontrivial fuzzy pairs one by one. 

 

2.1. Fuzzy pair reduction 

We now describe a single iteration, i.e. show how to replace a single fuzzy pair. 

Recall that fuzzy pairs (A, B) have the structural property that every node d  A∪B is 

either adjacent to all the nodes of A (of B) or to none of them. Thus as far as the 

stable sets of a coloring are concerned it is important to know whether a node of A (of 

B) is contained in a stable set whereas knowing the exact node itself is less important. 

Nodes in A and B can be re-distributed among the stable sets as long as they do not 

become adjacent in the sub-graph induced by A ∪ B. This is reflected in the following 

construction to compact a fuzzy pair. 

Consider a fuzzy circular interval graph G with weights w and a fuzzy pair (A, B) in 

G. Let )/()(: BAGDD  . For a subset S ⊆ Dwe define w(S) :=  sd
dw )( . The 

reduced graph (G′, w′) is defined as follows: 

D(G’ ):=   ,,,,,, 210210 bbbaaaD   

E(G′) := E(G)| 0d        completeADdadadad  0

210 :,,,;,  

                                                 completeBDdbdbdbd  0

210 :,,,;,     

                                             ∪ {{a0, a1}, {a0, a2}, {a1, a2}, {b0,b1}, {b0,b2}                                                                
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                                                        {b1,b2},{a0,b0},{a0,b1},{a0,b2},{a1,b0}, 

                                     {a1,b1},{a1,b2},{a2,b0},{a2,b1},{a2,b2}}. 

 

Fig. 3.  A fuzzy pair (A, B) and its replacement (A′, B′) in the reduction. The numbers 

next to the nodes denote their weights. 

 

w′(v):=  α                if  v=a1  or v=b1 

                    w(A) – α   if  v=a2 

                      w(B) – α   if  v=b2 

                      w(v)          else 

Notice that a similar construction is used in the independent work of Oriolo et al. [13] 

who designed an efficient recognition algorithm for fuzzy circular interval graphs. 

 

We next specify α. The sets A and B together with the complement of the edges of 

G[A ∪ B] define a bipartite graph H. If a stable set S of G has two vertices in A ∪ B, 

then those two vertices are connected by an edge in H. Furthermore the set (S \ (A ∪ 

B)) ∪ {a0, b0} is a stable set of G′. Writing a weighted k-coloring of G as the sum of 

characteristic vectors of stable sets w = χS1 + . . . . . . .+χSk , how many of the Si can 

contain two vertices of A ∪ B?  

This number can be expressed as the size of a largest b-matching in H. Given node 

labels b: D(H)  ,0  a b-matching is a multiset of edges of E(H) such that each node 

d ∈ D (H) is covered by at most b(d) of those edges. Alternatively one can define a 

maximum b-matching as an optimal solution to the linear program 









 
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Since H is bipartite, the vertices of the linear program (1) are integral; see, e.g. [15]. 

Now setting b := w, the number of stable sets Si that can contain two vertices of A ∪ 

B is clearly bounded by the size of a largest b-matching, as a coloring with ℓ many of 

those stable sets directly gives rise to a b-matching of size ℓ. The number α from the 

reduction above is the size of a largest b-matching or equivalently the optimum value 

of the linear program (1). We remark that this number can be computed efficiently 

using a combinatorial max s − t-flow algorithm, e.g. Karzanov’s preflow push 

algorithm [15]. Fig. 3 illustrates an example for the reduction. 

In order for the reduced graph to be useful for our reduction, we need to prove that it 

satisfies the following three properties. 

• The reduction preserves the structure of the graph, i.e. G′ is still a fuzzy 

circular interval graph. 

• If (A, B) was nontrivial, the number of nontrivial fuzzy pairs has been reduced 

by one. 

• We have ).()( '
' GG

ww    
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