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Abstract 

The intent of this paper is to study about some subspaces of a fuzzy 

topological space i.e. fuzzy semi-closed and fuzzy semi-regular sub-space, 

externally disconnected sub-space. We also obtain some properties of such 

spaces relative to the fuzzy topological space. 

 

INTRODUCTION: 

L.A. Zadeh1 was the first Mathematician who invented fuzzy set and placed before us 

very interesting characteristics1. 

A fuzzy set   is an universal set X is a mapping  . The null fuzzy set O is a  mapping 

from X to [0,1] which admits of the value O and the fuzzy set 1 is mapping from X to 

[0, 1] which admits of value 1 only. 

A fuzzy set   on X is called a fuzzy singleton if it takes the value (O) for a    except 

one. 

The point at which a fuzzy singleton takes the non  zero value is called the support of 

the singleton 2. 

A family , where I = [0, 1] is called a fuzzy topology for X if    
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The pair   is called a fuzzy topological space3. 

The members of    are called -fuzzy open sets. A fuzzy set U is called       -fuzzy 

closedet if its complement U  
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A  fuzzy subset 

~

  of X is called fuzzy semi open if   a fuzzy open set 

~

U  of X such 

that 
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Their 
~

  is called fuzzy semi closed 4,5  . 
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A sub set  of X is called fuzzy semi regular, if it is both fuzzy semi-open and fuzzy 

semi closed7.  

 

2. FUZZY SEMI CLOSED AND SEMI REGULAR SUB SPACE : 

Definition (2.1): 

A topological space  ,X   is said to be fuzzy semi closed if corresponding to every 
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cover    :C   by fuzzy semi open subsets of X,   finite fuzzy subset 0 a 

such that 

 
   0S0 :clX

 

A fuzzy subset 
~

  of X is called fuzzy semi closed relative to  ,X  if for every cover 

  :C  by fuzzy semi open subsets of X,   finite fuzzy subset such that 
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A fuzzy subset  
~

  of X is called fuzzy semi closed relative to  ,X
 
if for every 

cover 
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Definition (2.2): 

A fuzzy topological space ),X(   is said to be fuzzy semi-regular if for each fuzzy 

closed set U and a fuzzy point   a pair  of disjoint fuzzy semi open sets in such that  a 

pair  of disjoint fuzzy semi open sets in X such that . 

 

Theorem (2.3): 

A topological space 
),X( 

  is fuzzy semi-closed if every proper fuzzy semi-regular 

subset of X is fuzzy semi-closed relative to ),X(  . 

Proof: 

Let p be a proper fuzzy semi-regular subset of X. Let 
  C: 

be a fuzzy cover 

p such that    is a member of fuzzy semi open subsets of X for each . Then X-p 

also fuzzy semi  regular 


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
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 forms a cover of . 

Since X is fuzzy semi closed,    a finite sub family  such that, 
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Since p is a member of fuzzy semi-regular subsetr of X, so is 1-p and 

  :p1
 . 

 Since 1-p is fuzzy semi closed relative to X,   a finite subset  such that 
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 X  is fuzzy semi closed. 

 

Remarks (2.4): 

 For a fuzzy subset  of a space X, the following conditions are equivalent. 

 (i)  is semi closed relative to X . 

 (ii) Every cover of  by fuzzy semi open subsets of X has a finite sub cover. 

 (iii) Every cover of 
~

  by  fuzzy semi regular subsets of X has a finite sub 

cover. 

Theorem (2.5) : 

Let 
~

  
and  

~

  be two fuzzy subsets of a space X such that X    , where 

~


 
 is a 

fuzzy semi open subset, then if  
~

  
  be fuzzy semi closed relative to X, it is fuzzy 

semi closed relative to 

~

  also. 
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Proof : 

Let 
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3.  DISCONNECTED AND SEMI HAUSDORFF SPACE : 

Definition (3.1): 

A fuzzy topological space is said to be extremely disconnected if 






 ~

Ucl
 
is fuzzy 

open in X for every fuzzy5 open set  
~

U  
of X. 

 

Remarks (3.2): 

If x is an extremely disconnected fuzzy topological space and  is fuzzy semi regular 

subset of X, then  is fuzzy closed and fuzzy open in X. 

 

Remarks (3.3): 

A fuzzy open set of a space X is fuzzy semi-closed as sub space of X, iff it is fuzzy 

semi closed relative to X 

 

Theorem (3.4): 

An extremely disconnected fuzzy topological space X is fuzzy semi closed if every 

fuzzy semi-regular subset of X is a fuzzy semi closed sub-space of X. 
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Proof : 
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