Fuzzy semi-regular subset of Fuzzy topological space

Md. Arshaduzzaman

Department of Mathematics, G.B. College, Naugachia, Bhagalpur, Bihar (India).

Abstract

The intent of this paper is to study about some subspaces of a fuzzy topological space i.e. fuzzy semi-closed and fuzzy semi-regular sub-space, externally disconnected sub-space. We also obtain some properties of such spaces relative to the fuzzy topological space.

INTRODUCTION:

L.A. Zadeh¹ was the first Mathematician who invented fuzzy set and placed before us very interesting characteristics¹.

A fuzzy set is an universal set X is a mapping. The null fuzzy set O is a mapping from X to [0,1] which admits of the value O and the fuzzy set 1 is mapping from X to [0, 1] which admits of value 1 only.

A fuzzy set λ on X is called a fuzzy singleton if it takes the value (O) for a except one.

The point at which a fuzzy singleton takes the non zero value is called the support of the singleton 2.

A family , where I = [0, 1] is called a fuzzy topology for X if

$$\mathfrak{I}_{1}: \tilde{\mathbf{O}} \in \mathfrak{I}, \tilde{\mathbf{I}} \in \mathfrak{I}$$
$$\mathfrak{I}_{2}: \tilde{\lambda}^{\wedge} \mu \in \mathfrak{I} \forall \lambda, \mu \in \mathfrak{I}$$
$$\mathfrak{I}_{3}: \lambda \tilde{\mathbf{j}} \in \mathfrak{I} \forall \lambda \tilde{\mathbf{j}} \in \mathfrak{I} (\mathbf{j} = 1, 2, 3, \dots)$$

The pair is called a fuzzy topological space³.

The members of are called -fuzzy open sets. A fuzzy set U is called \Im -fuzzy closedet if its complement $U \in \Im$

The closure
$$\operatorname{Int}\left(\tilde{\lambda}\right)$$
 and the interior
 $\operatorname{Int}\left(\tilde{\lambda}\right)$ of a fuzzy set are defined by
 $\operatorname{Int}\left(\tilde{\lambda}\right) = ^{\left(\tilde{U}:\tilde{U}\right)} \tilde{u}$ a fuzzy open subset of $\tilde{\lambda}$

A fuzzy subset $\tilde{\lambda}$ of X is called fuzzy semi open if a fuzzy open set \tilde{U} of X such that

$$\tilde{U} \leq \lambda \leq cl \left(\tilde{U}\right)$$

Their $\tilde{\lambda}$ is called fuzzy semi closed $^{4,5}\,$.

The semi closure $\left[Int(\tilde{\lambda}) \right]_{S}$ and the semi interior $\left[Int(\tilde{\lambda}) \right]_{S}$ of a fuzzy set $\tilde{\lambda}$ are defined⁶ by

$$\left\lfloor cl\left(\tilde{\lambda}\right)\right\rfloor_{s} = \wedge \left\{ K: K \text{ is a semiclosed superset of } \tilde{\lambda} \right\}$$
$$\left\lfloor Int\left(\tilde{\lambda}\right)\right\rfloor_{s} = \left\{ K: K \text{ is a semiopen subset of } \tilde{\lambda} \right\}$$

A sub set of X is called fuzzy semi regular, if it is both fuzzy semi-open and fuzzy semi closed⁷.

2. FUZZY SEMI CLOSED AND SEMI REGULAR SUB SPACE :

Definition (2.1):

A topological space (X, \mathfrak{I}) is said to be fuzzy semiclosed if corresponding to every

cover $C = \{\lambda \alpha : \alpha \in \Delta\}$ by fuzzy semi open subsets of X, \exists finite fuzzy subset $\lambda \alpha_0$ a such that

$$\mathbf{X} = \left\{ \bigvee \left[\operatorname{cl} \lambda \boldsymbol{\alpha}_{0} \right]_{\mathrm{S}} : \boldsymbol{\alpha}_{0} \in \Delta \right\}$$

A fuzzy subset λ of X is called fuzzy semi closed relative to (X, \mathfrak{I}) if for every cover $C = \{\lambda \alpha : \alpha \in \Delta\}$ by fuzzy semi open subsets of X, \exists finite fuzzy subset $\lambda \alpha_0$ such that

$$\mathbf{X} = \left\{ \vee \left[c \mathbf{I} \left(\lambda \, \tilde{\boldsymbol{\alpha}}_{0} \right) \right]_{S} : \boldsymbol{\alpha}_{0} \in \Delta \right\}$$

A fuzzy subset $\tilde{\lambda}$ of X is called fuzzy semi closed relative to (X, \mathfrak{I}) if for every cover $C = \left\{ \lambda \tilde{\alpha} : \alpha \in \Delta \right\}$ of by fuzzy semi open sets of X, \exists a finite subset $\lambda \alpha_0$ such that

$$\tilde{\lambda} \leq \bigvee \left\{ \left| cl\left(\lambda \tilde{\alpha}_{0}\right) \right|_{S} : \alpha_{0} \in H \right\}$$

Definition (2.2):

A fuzzy topological space (X, \Im) is said to be fuzzy semi-regular if for each fuzzy closed set U and a fuzzy point a pair of disjoint fuzzy semi open sets in such that a pair of disjoint fuzzy semi open sets in X such that .

Theorem (2.3):

A topological space (X, \mathfrak{I}) is fuzzy semi-closed if every proper fuzzy semi-regular subset of X is fuzzy semi-closed relative to (X, \mathfrak{I}) .

Proof:

Let p be a proper fuzzy semi-regular subset of X. Let $\{\lambda \alpha : \alpha \in \Delta\} = C$ be a fuzzy cover p such that $\lambda \alpha$ is a member of fuzzy semi open subsets of X for each. Then X-p also fuzzy semi regular $\Rightarrow C \cup \left[1 - \tilde{p}\right]$ forms a cover of.

Since X is fuzzy semi closed, \exists a finite sub family such that,

$$X = \vee \left\{ \left| cl\left(\lambda \tilde{\alpha}_{0}\right) \right|_{s} : \alpha_{0} \in \Delta \cup \left(1 - \tilde{p}\right) \right\}$$
$$\Rightarrow p \leq \vee \left\{ \left| cl\left(\lambda \tilde{\alpha}_{0}\right) \right|_{s}, \alpha_{0} \in \Delta \right\}$$

Conversely let $C = \left\{ \lambda \tilde{\alpha} : \alpha \in \Delta \right\}$ be a cover of X, where is a member of fuzzy semi open set $\forall \alpha \in \Delta$

$$\mathbf{p} = \left\{ \left\lfloor c \mathbf{l} \left(\lambda \, \tilde{\boldsymbol{\alpha}}_0 \right) \right\rfloor \text{ for some } \boldsymbol{\alpha}_0 \in \Delta \right\}$$

Since p is a member of fuzzy semi-regular subsetr of X, so is 1-p and $1-p \le \lor \{\lambda \alpha : \alpha \in \Delta\}$

Since 1-p is fuzzy semi closed relative to X, \exists a finite subset such that

$$\begin{aligned} \mathbf{X} - \mathbf{p} &\leq \bigvee \left\{ \left| \mathbf{c} \mathbf{I} \left(\lambda \, \tilde{\boldsymbol{\alpha}}_{0} \right) \right|_{\mathbf{S}}, \boldsymbol{\alpha}_{0} \in \Delta \right\} \\ \Rightarrow \mathbf{X} &= \bigvee \left\{ \left[\mathbf{c} \mathbf{I} (\lambda \boldsymbol{\alpha}) \right]_{\mathbf{S}}, \boldsymbol{\alpha} \in \Delta \cup \lambda \boldsymbol{\alpha}_{0} \right\} \end{aligned}$$

 \Rightarrow X is fuzzy semi closed.

Remarks (2.4):

For a fuzzy subset λ of a space X, the following conditions are equivalent.

- (i) λ is semi closed relative to X.
- (ii) Every cover of by fuzzy semi open subsets of X has a finite sub cover.
- (iii) Every cover of $\tilde{\lambda}$ by fuzzy semi regular subsets of X has a finite sub cover.

Theorem (2.5) :

Let $\tilde{\lambda}$ and μ be two fuzzy subsets of a space X such that $\tilde{\lambda} \leq \tilde{\mu} \leq X$, where μ is a fuzzy semi open subset, then if $\tilde{\lambda}$ be fuzzy semi closed relative to X, it is fuzzy semi closed relative to μ also.

Proof:

Let $X = \left\{\lambda \alpha : \alpha \in \Delta\right\}$ be a cover of λ and $\lambda \alpha$ be a fuzzy semi open subset of μ for all $\alpha \in \Delta$. Since is a fuzzy open subset of X, so is $\lambda \alpha \forall \alpha \in \Delta$.

Since λ is fuzzy semi closed relative to X, a finite sub family ; α_0 such that

$$\tilde{\lambda} \leq \bigvee \left\{ \left[cl(\lambda \alpha_0) \right]_X \alpha_0 \in \Delta \right\}$$

$$\Rightarrow \tilde{\lambda} \leq \bigvee \left\{ \left[cl(\lambda \alpha_0) \right]_X \cap \mu \right\}$$

Hence
$$\tilde{\lambda} \leq \bigvee \left\{ \left[cl(\lambda \alpha_0) \right]_\mu, \alpha_0 \in \Delta \right\}$$

 $\Rightarrow \tilde{\lambda}$ is fuzzy semi closed relative to sub space $\stackrel{\sim}{\mu}$.

3. DISCONNECTED AND SEMI HAUSDORFF SPACE : Definition (3.1):

A fuzzy topological space is said to be extremely disconnected if $cl(\tilde{U})$ is fuzzy open in X for every fuzzy⁵ open set \tilde{U} of X.

Remarks (3.2):

If x is an extremely disconnected fuzzy topological space and λ is fuzzy semi regular subset of X, then λ is fuzzy closed and fuzzy open in X.

Remarks (3.3):

A fuzzy open set of a space X is fuzzy semi-closed as sub space of X, iff it is fuzzy semi closed relative to X

Theorem (3.4):

An extremely disconnected fuzzy topological space X is fuzzy semi closed if every fuzzy semi-regular subset of X is a fuzzy semi closed sub-space of X.

Proof:

Let $C = \left\{ \lambda \tilde{\alpha} : \alpha \Delta \right\}$ be a fuzzy cover of X, where $\lambda \alpha$ is a fuzzy semi open subset of $X \forall \alpha \in \Delta$.

Suppose that $1 \neq \left[c l_{X} \left(\lambda \tilde{\beta} \right) \right]_{S} \neq 0$

Since $\lambda \tilde{\beta}$ is a fuzzy semi open subset of X, so $\left\lfloor cl_X(\lambda \tilde{\beta}) \right\rfloor_S$ is a fuzzy semi regular subset of X.

 $\Rightarrow 1 - \left\lfloor cl_{X}\left(\lambda\tilde{\beta}\right) \right\rfloor_{s} \text{ is a fuzzy semi regular subset of X.}$

 $\Rightarrow 1 - \left\lfloor cl_{x}\left(\lambda\tilde{\beta}\right) \right\rfloor_{s} \text{ is a fuzzy semi closed subset and hence both fuzzy semi open and}$

semi closed in X, by remark (3.2), so $1 - \left[cl_x \left(\lambda \tilde{\beta} \right) \right]_s$ is fuzzy semi closed relative to X, be remarks (3.3),

$$\Rightarrow 1 - \left\lfloor cl_{x}\left(\lambda\tilde{\beta}\right)\right\rfloor_{s} \leq \sqrt{\left\{\lambda\tilde{\alpha}:\alpha \in \Delta\right\}}, \exists$$

a finite sub family $\lambda \alpha_0$ such that,

$$X = \vee \left\{ \left\lfloor c l \left(\lambda \tilde{\alpha} \right) \right\rfloor_{S} \cup \lambda \tilde{\beta} \right\}$$

 \Rightarrow Xis fuzzysemiclosed

REFERENCES

- [1] Zadeh, L.A., Fuzzy In form and Control volume-8, 338-359 (1965).
- [2] Kerre E.E., Simon Stevin Quart', J. Pure Appl. Math-53, 229-248 (1979).
- [3] Palaniapan N., Fuzzy Topology', Narosa Publishing House, 15-31 (2007).
- [4] Azad K.K., J. Math Anal. Appl. (82), 14-32 (1992).

292

- [5] Balasubramaniam, G,K,, Bemetika 28(3), 239-244 (1992).
- [6] Yalvac T.H., J. Math Anal. Appl. 126, 407-423 (1987).
- [7] Mukharji M.N. and Sinha S.P., 'Fuzzy Sets and Systems 34, 245-254 (1990).
- [8] K.C. Chattopadhyay, S.K. Samanta., Fuzzy topology: Fuzzy closure operator, fuzzy compactness and fuzzy connectedness, Fuzzy Sets and Systems, Volume 54, Issue 2, 10 March 1993, Pages 207-212.
- [9] A. P. Šostak, "Basic structures of fuzzy topology," Journal of Mathematical Sciences, vol. 78, no. 6, 1996, Pages 662–701.

Md. Arshaduzzaman