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Abstract

A set M of vertices of a connected graph G is a monophonic set if every vertex
of G lieson an  x-y monophonic path for some elements x and y in M. The
minimum cardinality of a monophonic set of G is the monophonic number of
G, denoted by m(G). A total monophonic set of a graph G is a monophonic set
M such that the subgraph induced by M has no isolated vertices. The
minimum cardinality of a total monophonic set of G is the total monophonic
number denoted by m(G). A connected total monophonic set of a graph G is a
total monophonic set M such that the subgraph (M)induced by M is connected
The minimum cardinality of a connected total monophonic set of G is the
connected total monophonic number of G and is denoted by m.(G). It is
proved that, for the integers a, b and ¢ with a < b < ¢, there exists a
connected graph G having the monophonic number a,the total monophonic
number b, and the connected total monophonic number c.
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monophonic distance, connected total monophonic number. AMS Subject
classification : 05C12.

1.INTRODUCTION

For any two vertices x and y in a connected graph G, the distance d(x, y) is the length
of a shortest x-y path in G. An x-y path of length d(x, y) is called an x-y geodesic. A
vertex v is said to lie on an x-y geodesic P if v is a vertex of P including the vertices x
and y. A set S of vertices is a geodetic set if /[S] = V, and the minimum cardinality of
a geodetic set is the geodetic number g(G). A geodetic set of cardinality g(G) is called
a g-set. The geodetic number of a graph was introduced in [2, 6] and further studied in
[3, 4, 5]. A connected geodetic set of a graph G is a geodetic set S such that the
subgraph GI[S] induced by S is connected. The minimum cardinality of a connected
geodetic set of G is the connected geodetic number of G and is denoted by gc(G). The
connected geodetic number of a graph is introduced in [9] and further studied in
[11,12] .

A chord of a path u1, u, ..., ux in G is an edge u; u; with j >i+ 2. A u-v path Pis
called a monophonic path if it is a chordless path. A set M of vertices is a
monophonic set if every vertex of G lies on a monophonic path joining some pair of
vertices in M, and the minimum cardinality of a monophonic set is the monophonic
number m(G). The monophonic number of a graph G was studied in [10]. The
eccentricity e(v) of a vertex v in G is the maximum distance from v and a vertex
farthest from v. The minimum eccentricity among the vertices of G is the radius, rad
(G) or r(G) and the maximum eccentricity is its diameter, diam G of G.

A total monophonic set of a graph G is a monophonic set M such that the subgraph
induced by M has no isolated vertices. The minimum cardinality of a total
monophonic set of G is the total monophonic number denoted by m/(G). The Total
edge monophonic number of a graph was introduced and studied in [1]. A connected
monophonic set of a graph G is a monophonic set M such that the subgraph (M)
induced by M is connected . The minimum cardinality of a connected monophonic
set of G is the connected monophonic number of G and is denoted by m.(G). The
connected monophonic number of a graph was studied in [8].

The following Theorems are used in the sequel.

Theorem 1.1:[4] Each extreme vertex of a connected graph G belongs to every
geodetic set of G.

Theorem 1.2: [7] For any non trivial tree 7 of order p, g¢(7) = p.

Theorem 1.3:[1] Each extreme vertex of G belongs to every total monophonic set of
G.
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Theorem 1.4:[7] The monophonic number of a tree 7' is the number of end vertices in
G.

2. The Connected Total Monophonic Number Of a Graph

Definition 2.1: Let G be a connected graph with at least two vertices. A connected
total monophonic set of a graph G is a total monophonic set M such that the subgraph
(M)induced by M is connected . The minimum cardinality of a connected total
monophonic set of G is the connected total monophonic number of G and is denoted
by m.(G). A connected total monophonic set of cardinality m.(G) is called a m.t —set
of G or a minimum connected total monophonic set of G.

Example 2.2: Consider the graph G of Fig. 2.1, M = {v1, v2, ve} IS @ minimum
monophonic set of G. M; = {vi,v2, vs, v7,} IS @ minimum total monophonic set of G,
so that m(G) = 4. Here the induced subgraph (M;) is not connected , so that M1 is
not a connected total monophonic set of G. Now it is clear that M1 = {vi, v2, v3, ve,
v7} IS @a minimum connected total monophonic set of G and so m.(G) = 5.
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Figure 2.1

Observation 2.3: Every extreme vertex of a connected graph G belongs to every
connected total monophonic set of G. In particular , every end vertex of G belongs to
every connected total monophonic set of G.

Proof: Since every connected total monophonic set is also a total monophonic set, the
result follows from Theorem 1.3.

Theorem 2.4: Let G be a connected graph with cut-vertices and let A be a connected
total monophonic set of G. If v is a cut-vertex of G, then every component of G-v
contains an element of M.

Proof: Suppose that there is a component B of G at a cut-vertex v such that B contains
no vertex of M. Letu €V(B). Since M is a connected total monophonic set of G, there
exists a pair of vertices x and y in M such that « lies on some x-y total monophonic
path P: x=uo, uj, uz, . .. ,u,=y in G. Since v is a cut-vertex of G, the x-u sub
total monophonic path of P and the u-y total monophonic sub path of P both contain
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v, it follows that P is not a total monophonic path, contrary to the assumption.
Therefore every component of G-v contains an element of M.

Theorem 2.5: Every cut-vertex of a connected graph G belongs to every connected
total monophonic set of G.

Proof: Let v be any cut-vertex of G and let G;, G», . . ., G«{(r > 2) be the components
of G-v. Let M be any connected total monophonic set of G. Then by Theorem 2.4, M
contains at least one element from each G; (1< i < r). Since (M)is connected, it
follows that veM.

Corollary 2.6: For a connected graph G with & extreme vertices and / cut-vertices,
meG) > max{2, k+I}.

Proof: This follows from Observations 2.3 and Theorem 2.5.

In the following we determine the connected total monophonic number of some
standard graphs.

Corollary 2.7: (i) For any non trivial tree T of order p, m.(G) = p.
(i) For the complete graph K, (p > 2), mc(K}) = p.
(iii) For the Petersen graph Kio 15 met(Kio.15) = 3.
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Theorem 2.8: For the cycle C, (p > 3), m(C,) = 3.

Proof: Letvy, v2, ... ,v, vi beacycle of length p. Letx,y € V(C,) such that d(x,y) =
2. Then M = {x,y} is a monophonic set of C,,. But (M})is not connected . Letu bea
vertex of C, which is adjacent to both x and y. Then M u {u} is connected total
monophonic set , so that m.(C,) = 3.
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3ifm=2,n22}

Theorem 2.9: For the complete bipartite graph G =K, ,,, me(G) = { 4if3 <m<n

Proof: Let U= {us, us, . ... ,unyand W={v;, vz, ... ,v.} be the partite sets of G.
First assume that m = 2, n > 2 . Let M < V(G). If | M| = 2, then either (M)is
disconnected or (M)is an edge. It is clear that A is not a connected total monophonic
set of G . However, M ={u;, uz, v; } is a connected total monophonic set of G, so that
me(G) = 3. Next assume that 3 <m <n. Let M € V(G). If | M| =2, then it can be
easily verified that M is not a connected total monophonic set of G. Let | M | =3. If
M < Uor M < W, then (M)is not connected and so M is not a total monophonic set of
G. If M < Uu W, thenitis easily seen that M is not a total monophonic set of G and
S0 me(G) > 4. Let M = {w;, uj, w, wr }. It is easily verified that M is a total
monophonic set of G. Since (M)is connected, it follows that A/ is a connected total
monophonic set of G and so m«(G) = 4.

Theorem 2.10: For a connected graph G of order p, 2 < m(G) < m(G) < g.(G) < p.

Proof: Any monophonic set needs atleast two vertices and so m(G) > 2. Since every
connected total monophonic set is also a total monophonic set, it follows that m(G) <
me(G). Since every connected total geodetic set is also a connected total monophonic
set , it follows that meG) < ge(G). Also, since (V)induces a connected total
geodetic set of G, it is clear that g.(G)< p.

Remark 2.11: The bounds in Theorem 2.10 are sharp. For any non-trivial path P,
m(P) = 2. For the complete graph K,,, m(Ky,). For G = Ky, n(4 < m < n). By
Theorem 2.9, mq(G) =4 and also it is easily verified that g.(G) = 4 so that m.(G) =
g«(G). By Theorem 1.2, For any non trivial tree 7, g. (G) =p , g+(G) = p. Also , all
the inequalities in the theorem are strict. For the graph G given in Figure 2.2, m(G) =
3, me(G) =5, go(G) =6 and p = 7 so that 2 <m(G) < me(G) < geG) < p.
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Theorem 2.12: Let G be a connected graph of order p > 2. Then G = K if and only if
m(;[(G) = 2
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Proof: If G = K>, then m«(G) = 2. Conversely, let m.(G) = 2. Let M = {u, v} be a
minimum connected total monophonic set of G. Then uv is an edge. If G # K>, then
there exists a vertex w different from « and v that lies on a path between u and v.
Since uv is a chord, u-v is not a total monophonic path , so that M is not a m.; —set,
which is a contradiction. Thus G = K.

Theorem 2.13: Let G be a connected graph. Then every vertex of G is either a cut-
vertex or an extreme vertex if and only if m.(G) = p.

Proof: Let G be a connected graph with every vertex of G is either a cut-vertex or an
extreme vertex. Then the result follows from Observation 2.3 and Theorem 2.5.

Conversely, suppose m«(G) = p. Suppose that there is a vertex x in G which is neither
a cut-vertex nor an extreme vertex. Since x is an extreme vertex , N(x) does not
induce a complete subgraph and hence there exist # and v in N(x) such that dn(u, v) =
2. Clearly, x lies on a u-v monophonic path in G. Also, since x is not a cut-vertex of
G, G-x is connected. Thus V-{x} is a connected total monophonic set of G and so
me(G) < | V- {x} | < p-1, which is a contradiction. Therefore every vertex of G is
either a cut-vertex or an extreme vertex.

Theorem 2.14: If G is a non complete connected graphs such that it has a minimum
cutset, then m.(G) < p-K(G)+1.

Proof: Since G is non complete , it is clear that 1< K(G) <p-2. Let U={ uys, us, . ..

,ur} be a minimum cutset of G. Let G;,G>, . . . ,G, (r > 2) be the components of G-U
and let M = V(G) — U. Then every vertex u;(1 <i < k) is adjacent to at least one
vertex of Gj, for every j(1<j <r). Itis clear that M is a monophonic set of

G and (M)is not connected. Also , it is clear that (M U {x})is a connected total
monophonic set for any vertex x in U so that m.(G) <p — K(G) + 1.

Remark 2.15: The bound in Theorem 2.14 is sharp. For the cycle G = C4, me(G) = 3.
Also, K (G)=2,p—K(G)+1=3. Thus m«(G) =p—K(G) + 1.

3 REALIZATION RESULTS:

Theorem 3.1: For positive integers rm, dm and [ >dy- rnt 3 with ru< d, < 2rn, there
exists a connected graph G with rad,.(G) = r», diamm(G) = d» and m(G) = L.

Proof: When r,, = 1, we let G = K;,..;. Then the result follows from Corollary
2.7 (). Let r,n > 2, let Cri2: vy, v2, . . ., ve+2, v1 be a cycle of length »+2 and
letPy oy 41 :uo un uz ... uq . beapathoflengthd, —n,+1. LetHbea
graph obtained from C,. ,, and P; _,. .; by identifying v; in C. ., and ug in
Py —y.+1- Nowadd/-dy,+ 1, —3 new vertices wy, wa, ..., Wi_g_4r -3 10 H
and join each w; (1<i<l-dp+n,-3)tothe vertex ug_ . _4
and obtain the graph G as shown in Figure 3.1.
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Then rad,(G) = r» and diam m(G) = dn. Let M = { g, uy, . . ., U, —ry WLW2, - o

Wi_qa. +r,,—3} D€ the set of all cut vertices and end vertices of G. By Theorem 2.5, M
is a subset of every connected total monophonic set of G. It is clear that M is not a
connected total monophonic set of G . Also M u {x}, where x € M is not a connected
total monophonic set of G. Hence M u { v, v3} is a connected total monophonic set
of G, so that m«(G) = L.

Theorem 3.2: For any positive integers @, b, ¢ with a < b < ¢, there exists a connected
graph G such that m(G) = a , m{G) = b , me(G) = c.

Proof: Casel:a<b=c. LetG be any tree. Then by Theorem 1.4 , m(G) = a, and by
corollary 2.7 (i), m{G) = mc(G) = b.

Case2:a<b<c. LetPeps z1, 22 ..., ze-p+4 D€ @ path of length c-b+4. Let Q. xi,
yi (1 <i<a)be apath of length 1. Let A be a graph obtained from P..,+4 by adding
a-2 new vertices {u;, u, . . ., Ua-2} t0 Pep+a @and join ug, uo, . . ., uq-2 t0 z2. Subdivide
the edge z>u;, where 1 <i < b-a-2, calling the new vertices v, vz, . . ., Vb-a-2, Where u;
is adjacent to v; and v; is adjacent to z, forall i € {1, 2, . . ., b-a-2}. Let G be a graph
shown in Figure 3.2 obtained from H by joining each x; to z> and each y; tozs (1 <i <

a).
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Figure 3.2
Let M = { z1, us, us, . . . ,ua2 zcb+4} be the set of all end vertices of G. Now it is

easily seen that M is a monophonic set of G, so that m(G) =a. LetM;={vs, vs, ...,
Vb-a-2, 22, Ze-b+3}. By Theorem 1.4, every total monophonic set contains M. Clearly M-
= M u M; is a total monophonic set of G, m/{G) = b. Clearly (M,)is not connected.
However M> u {z3, z4, . . ., zc-p+3} IS @ connected total monophonic set of G, so that
me(G) = c.

Theorem 3.3: For every pair m, n of positive integers with 3 < m <, there exists a
connected graph G of order n such that m.(G) = m.

Proof: Let Pu: vi,v2, ... ,vm be a path of m vertices. Add n-m new vertices x;, xz, . . .
Xn-m and join each x; (1 <i <n-m) to both v; and v3 , we get the connected graph G as
shown in Figure 3.3. Its order is (n-m) + m = n.
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Clearly M1 = {vi, v} is a monophonic set of G and M2 = M; u {v2, v;,_1} is the toal
monophonic set of G. But Mz is not connected . Now M3 =M>u {vs3, v4, ... ,Um_2} IS
a connected total monophonic set of G. Now | M3| = 4+ m-4 = m.
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