Fuzzy Weakly Compact Continuous Functions

S. Daniel¹ and Dr.M. Jayaraman²

¹Research Scholar, J.J. College of Arts and Science, Pudukkottai – 622422, Tamil Nadu, India.

²Assistant Professor, P.G. and Research Department of Mathematics, Raja Doraisingam Government Arts College, Sivaganga – 630561, Tamil Nadu, India.

Definition :1.1

Throughout this paper X and Y represents fuzzy topological spaces on which no separation axioms are assumed unless explicitly stated. Let S be a fuzzy subset of a space X. The fuzzy closure and the fuzzy interior of S in X are denoted by $Fcl_x(S)$ and $Fint_x(S)$ or simply Fcl(S) and Fint(S) respectively. A fuzzy subset S is said to be fuzzy regular open (resp. fuzzy regular closed) if Fint(Fcl(S)) = S (resp. Fcl(Fint(S)) = S).

Definition : 2.1

An fuzzy open cover { $V_{\alpha} / \alpha \in \nabla$ } of a fuzzy topological space X is said to be fuzzy regular if for each $\alpha \in \nabla$ there exists a nonempty regular closed set F_{α} in X, such that $F_{\alpha} \& V_{\alpha}$ and

 $X = U \{ Fint (F_{\alpha}) / \alpha \in \nabla \}.$

Definition : 2.2

A fuzzy topological space X is said to be fuzzy weakly compact (resp. fuzzy quasi H-closed) if every fuzzy regular (resp. fuzzy open) cover of X has a fuzzy finite subfamily whose fuzzy closure is a fuzzy cover of X.

Definition : 2.3

A fuzzy topological space X is said to be fuzzy almost- regular if for each fuzzy regular closed set F of X and each point $x \in X$ - F there exist disjoint fuzzy open sets U

and V, such that F & U and $x \in X$.

Definition : 2.4

A fuzzy subset K of a fuzzy topological space X is said to be fuzzy weakly compact relative to X if for each fuzzy cover { $V_{\alpha} / \alpha \in \nabla$ } of K by fuzzy open set of X satisfying the following properties.

- (i) There exists a finite fuzzy subset ∇_0 of ∇ , such that $K \square U\{ \operatorname{Fcl}(V_\alpha) / \alpha \in \nabla_0 \}$.
- (ii) For each $\alpha \in \nabla$, V_{α} contains a nonempty fuzzy regular closed set F_{α} of x and

K & U{ Fint $(F_{\alpha})/\alpha \in \nabla$ }.

Definition : 2.5

Let F be a fuzzy filter on a space X. A point $x \in X$ is called a γ -fuzzy adherence point of F if $F/\mathcal{U}(\overline{\mathcal{U}}_x) \neq 0$.

Definition : 2.6

Let A be a fuzzy subset of a space X. A point $x \in X$ is called a γ -fuzzy adherence point of A if $A \cap V \neq \emptyset$ for every $V \in \mathcal{U}(\overline{U}_x)$. The fuzzy set of all γ -fuzzy adherence points of A is called the γ -fuzzy closure of A. If A contains the γ -fuzzy closure of A then it is called γ -fuzzy closed.

Fuzzy sets Fuzzy Weakly Compact Relative to a Space .

Definition : 3.1

A fuzzy filter F on a space X is said to be fuzzy quasi-regular if there exists an fuzzy open filter ζ on X, such that $F = \mathcal{U}(\overline{\zeta})$.

Theorem: 3.2

For a fuzzy subset A of a space X the following are equivalent.

- (1) A is fuzzy weakly compact relative to X.
- (2) Every fuzzy open filter ζ with tr_A $\zeta \neq 0$ has a γ -fuzzy adherence point in A.
- (3) Every fuzzy filter $\overline{\zeta}$ such that ζ is an fuzzy open filter and tr_A $\zeta \neq 0$ has an γ -fuzzy adherence point in A.
- (4) Every fuzzy quasi-regular filter $F = \mathcal{U}(\bar{\zeta})$ such that $tr_A\zeta \neq 0$ has an fuzzy adherence point in A.

- (5) Every fuzzy filter $\overline{\mathcal{F}}$ such that F is a fuzzy quasi-regular filter $F = \mathcal{U}(\overline{\zeta})$ with $\operatorname{tr}_A \zeta \neq 0$ has an fuzzy adherence point in A.
- (6) Every fuzzy filter F such that F is a fuzzy quasi-regular filter $F = \mathcal{U}(\bar{\zeta})$ with $tr_A\zeta \neq 0$ has an fuzzy adherence point in A.
- (7) Every fuzzy open ultra filter ζ with tr_A $\zeta \neq 0 \gamma$ -fuzzy converges.
- (8) Let { $C_{\alpha} / \alpha \in \nabla$ } be a family of fuzzy closed set of X, such that for each $\alpha \in \nabla$ ther exists an fuzzy open set $\bigwedge_{\alpha} of X$ satisfying $C_{\alpha} \& A_{\alpha}$ and \cap { Fcl $(A_{\alpha}) / \alpha \in \nabla$ } & X-A. Then there exists a finite fuzzy subset ∇_{o} of ∇ such that \cap { Fint $(C_{\alpha}) / \alpha \in \nabla_{o}$ } & X-A.

Proof : (1) \Rightarrow (2)

Let ζ be an fuzzy open filter on X with $\operatorname{tr}_A \zeta \neq 0$. Suppose that $\zeta \wedge \mathcal{U}$ ($\overline{\mathcal{U}}_x$) = 0 for every $x \in A$. Then there exists fuzzy open sets $G_x \in \zeta$, $U_x \in \mathcal{U}_x$ and $\Lambda_x \in \mathcal{U}$ ($\overline{\mathcal{U}}_x$), such that $G_x \cap A_x = \varphi$ and $U_x \&$ Fcl (U_x) $\& \wedge_x$. By $G_x \cap A_x = \varphi$, we obtain

Fcl $(G_x) \cap \Lambda_x = \varphi$ and hence Fcl $(G_x) \cap$ Fcl $(U_x) = \varphi$.

Let us put $B_x = X - Fcl (G_x)$, then $Fcl (U_x) \& B_x$ and $B_x \in \mathcal{U} (\overline{\mathcal{U}}_x)$.

The family { $B_x / x \in A$ } is a fuzzy cover of A by fuzzy open set of X and

A \square U{ Fint (Fcl (\mathcal{U}_x))/x \in A}. Therefore, there exists a finite number of points x_1 , $x_2 \dots x_n$ in A such that, A \square U{ Fcl (B_{x_i})/i = 1,2,...n}, Therefore we have,

$$\cap \{ X - Fcl(B_{x_i}) / i = 1, 2, ..., n \} \& X - A \longrightarrow (I)$$

For each i = 1, 2, ..., n, G_{x_i} & Fint (Fcl (G_{x_i})), Hence we have

$$X - Fcl (B_{x_i}) = Fint (X - B_{x_i})$$

= Fint (Fcl (G_{x_i})) $\in \zeta$.

Therefore by (I) we obtain $X - A \in \zeta$. This is a contradiction.

$$(2) \Longrightarrow (3) \Longrightarrow (4) \Longrightarrow (5) \Longrightarrow (6) = (4) \Longrightarrow (7) \Longrightarrow (1)$$

 $(4) \Rightarrow (8)$:

Let $I(\nabla)$ be the family of all finite fuzzy subsets of ∇ . Suppose that ,

 \cap { Fint (C_{α}) / $\alpha \in \nabla$ } \notin X – A for every $\nabla \in I(\nabla)$.

Then $\mathcal{F} = \{ \bigcap_{\alpha \in \nabla} F \text{ int } (\mathbb{C}_{\alpha}) / \nabla \in I(\nabla) \}$ is an fuzzy open filter base with tr_A $\mathcal{F} \neq 0$. Thus $\mathcal{U}(\overline{\mathcal{F}})$ is a fuzzy quasi- regular filter on X, such that tr $\neq 0$. By (4), there exists a point x \in A such that $\mathcal{U}(\overline{\mathcal{F}}) / \mathcal{U}_x \neq 0$. Put $\mathcal{P} = \{ \bigcap_{\alpha \in \nabla} \Lambda_{\alpha} / \nabla \in I(\nabla) \}$, then it is an fuzzy open filter base such that $\mathcal{U}(\overline{\mathcal{F}}) \& \mathcal{P}$.

Therefore $\mathcal{P} \wedge \mathcal{U}_x \neq 0$, and hence $x \in \text{Fcl}(\wedge_{\alpha})$ for every $\alpha \in \nabla$.

Thus we obtain $x \in \cap \{ Fcl(A_{\alpha}) / \alpha \in \nabla \}$. This is a contradiction because

 $\cap \{ \text{ Fcl } (A_{\alpha}) \, / \, \alpha \in \nabla \} \& X - A \; .$

<u>(8)⇒(1):</u>

Let { $\Lambda_{\alpha} / \alpha \in \nabla$ } be an fuzzy open cover of A with property (i). For each $\alpha \in \nabla$ there exists a nonempty fuzzy regular closed set C_{α} such that $C_{\alpha} \& A_{\alpha}$ and

A & U{ Fint $(C_{\alpha}) / \alpha \in \nabla$ }. We consider the family {X - $A_{\alpha} / \alpha \in \nabla$ } of fuzzy closed sets. For each $\alpha \in \nabla$, X - C_{α} is fuzzy open in X, X - $C_{\alpha} \Box X$ - A_{α} and \cap { Fcl (X - $C_{\alpha}) / \alpha \in \nabla$ }

X - U{ Fint $(C_{\alpha}) / \alpha \in \nabla$ } & X - A, by (8) there exists a finite fuzzy subset ∇_0 of ∇ such that

 $\cap \ \{ \ \text{Fint} \ (\ X \ - \land_{\alpha} \ / \ \alpha \in \nabla_o \} \ \& \ X \ - \ A \ , \ \text{Therefore we obtain} \ A \ \& \ \cup \{ \ \text{Fcl} \ (A \ _{\alpha}) \ / \ \alpha \in \nabla_o \}.$

This shows that A is fuzzy weakly compact relative to X.

Fuzzy Weakly Compact Continuous Functions.

Definition : 4.1

A function $f: X \to Y$ is said to be fuzzy weakly compact continuous if for each $x \in X$ and each fuzzy open neighbourhood V of f(x) having the complement fuzzy weakly compact relative to Y, there exists an fuzzy open neighbourhood U of X such that f(U) & V (i.e FWCC – Fuzzy Weakly Compact Continuous Functions).

Theorem: 4.2

For a function $f: X \rightarrow Y$ the following are equivalent.

- (1) f is FWC continuous.
- (2) If V is fuzzy open in Y and Y V is fuzzy weakly compact relative to Y, then $f^{-1}(V)$ is fuzzy open in X.
- (3) If F is fuzzy closed in Y and fuzzy weakly compact relative to Y, then f⁻¹(F) is fuzzy closed in X.

Proof : $(1) \Rightarrow (2)$

Let V be an fuzzy open set of Y. such that Y - V is fuzzy weakly compact relative to Y. Let

 $x \in f^{-1}(V)$. Then $f(x) \in V$ and there exists an fuzzy open neighbourhood U of x such that

f(U) & V. Therefore we have $x \in \bigcup \& f^{-1}(V)$.

This shows that $f^{-1}(V)$ is fuzzy open in X.

 $(2) \Rightarrow (3)$

This is obvious.

 $(3) \Rightarrow (1)$:

Let $x \in X$ and V an fuzzy open neighbourhood of f(x) such that Y -V is fuzzy weakly compact relative to Y. By (3), $f^{-1}(Y - V)$ is fuzzy closed in X and hence

 $U = f^{-1}(V)$ is an fuzzy open set containing x such that f(U) & V.

Lemma: 4.3

If A_1 and A_2 are fuzzy weakly compact relative to a space X, then $A_1 \cup A_2$ is fuzzy weakly compact relative to X.

Proof:

Let $\psi = \{ V_{\alpha} / \alpha \in \nabla \}$ be a fuzzy cover of $A_1 \cup A_2$ by fuzzy open sets of X satisfying property (P). Then ψ is a fuzzy cover of A_1, A_2 satisfying (P), and hence for each i = 1, 2 there exists a fuzzy finite subset ∇_i of ∇ such that $A_i \& \cup \{ Fcl (V_{\alpha}) / \alpha \in \nabla_i \}$.

Therefore, we have $A_1 \cup A_2 \& \cup \{ \operatorname{Fcl} (A_{\alpha}) / \alpha \in \nabla_1 \cup \nabla_2 \}.$

This shows that $A_1 \cup A_2$ is fuzzy weakly compact relative to X.

REFERENCES

- [1] K.K. Azad, On fuzzy semi continuous, fuzzy almost continuous, and fuzzy weakly continuous, J. Math. Anal. Appl. 82(1981), 14-32.
- [2] N. Biswas, on Characterizations of Semi Continuous functions, Abti, Accad, Na2, Lincei Rend Cl.Sci Fis Mat Natur(8) 48, 399-402 (1970)
- [3] Hu Cheng-Ming, A class of fuzzy topological space I, Neimenggu Daxue Xuabao I (1980), 101
- [4] sR. Lowen, Fuzzy topological spaces and fuzzy compactness, J. Math, Appl. 56(1976), 621-633.

S. Daniel and Dr.M. Jayaraman