On Co-Multiplication Gamma Acts

Samer Adnan Jubair^{1*} And Maryam Sabbeh Al_Rubaiea

^{1*}Department of Pathological Analysis, College of Science, Al-Qasim Green University, Babylon, Iraq E-mail: samer.adnan@science.uoqasim.edu.iq Department of Biology, College of Science, Al-Qasim Green University, Babylon, Iraq E-mail: maryam sabbeh@science.uoqasim.edu.iq

Abstract

The purpose of this paper is to introduce the notion of co-multiplication gamma acts which is the dual notion of multiplication gamma acts. Some results and characterization related this notion obtained. Various properties concerning multiplication and co-multiplication gamma acts over a commutative gamma semigroups have been discussed and the relationship between them has been studied. The concept of second gamma subact was investigated and study the relation between it and co-multiplication gamma acts.

Keywords: Co-multiplication Gamma Acts, Gamma Acts, Gamma semigroups, Multiplication Gamma Acts, Second Gamma Subacts.

1. Introduction

In 1988, Sen MK, Saha [1] introduced the concept of gamma semigroups as a generalization of semigroups. They studied the structure of gamma semigroups and obtained various generalizations analogous of corresponding parts in semigroup theory. Later a lot of researchers studied on the gamma semigroups. Chinram R, Jirojkul C [2] extended many classical notions of semigroups to Γ -semigroups and they studied the properties of Γ -semigroups. In 2016, Abbas M.S, Faris [3] introduced the notion of gamma acts over gamma semigroup as generalization of acts over semigroups. Many classical concepts and results of the theory of acts have been extended and generalized to gamma acts. They also study several properties such as: ordered gamma acts, quotient gamma acts, free gamma acts and cofree gamma acts of gamma acts supported by examples and counter examples. In 2021, Abbas MS, Jubeir [4] introduced the concept of multiplication gamma acts. Many properties and results about these concept was studied and another concepts have been studied such as: α -divisible gamma acts, large gamma acts, uniform gamma acts, gamma nilpotent, fully

invariant gamma subacts and finitely cogenerated gamma acts and their properties are clarified. Also, used the concept of multiplication gamma acts to introduce a new mathematical system which is called a semigroup associative with multiplication gamma act and its basic properties are discussed. Moreover, they showed that under the condition of multiplication gamma acts many properties of gamma acts can be done. As a continuation of these studies, definition of pure gamma act and idempotent gamma acts are given in [5, 6].

In our work the notion of co-multiplication gamma acts was introduced as a dual notion of multiplication gamma acts and investigated some main properties of this class of gamma acts. Some results concerning multiplication and co-multiplication gamma acts over a commutative gamma semigroups obtained. Furthermore, another characterization for co-multiplication gamma acts was given. Some examples and counterexamples have been considered. Also characterize certain class of gamma subacts, in terms of co-multiplication gamma acts. Thought this paper S will be denote a gamma semigroup with zero element.

2. Basic Concepts

In this section concepts relating to this work are defined.

Definition 2.1. [1]: Let S, Γ be non-empty sets, S is called a gamma semigroup (briefly, Γ -semigroup) if there exists a mapping: $S \times \Gamma \times S \to S$ defined (s, α, t) by sat that satisfies the condition: $s\alpha(t\beta r)=(s\alpha t)\beta r$ for all $s,t, r \in S$ and $\alpha,\beta \in \Gamma$. A Γ -semigroup S is said to be commutative if $s_1\alpha s_2=s_2\alpha s_1$ for all $s_1, s_2 \in S$ and $\alpha \in \Gamma$.

Definition 2.2.[1]: Let S be a Γ -semigroup. An element $s_1 \in S$ is called the left (right) identity of S if $s_1 \alpha s_2 = t$ ($s_2 \alpha s_1 = t$) for all $s_2 \in S$ and $\alpha \in \Gamma$. An element $s \in S$ is called identity if it is both a left and right identity of S. A Γ -semigroup with identity is called a Γ -monoid. The identity of a Γ -semigroup (if exists) is denoted by 1.

Definition 2.3. [1]: Let S be a Γ -semigroup. A non-empty subset T of S is said to be a Γ -subsemigroup of S if $t_1 \alpha t_2 \in T$ for all $t_1, t_2 \in T$ and $\alpha \in \Gamma$.

Definition 2.4 .[1]: Let S be a Γ -semigroup. A non-empty subset K of Γ -semigroup S is called left (right) Γ -ideal if S Γ K \subseteq K (K Γ S \subseteq K) where S Γ K={*sak: s* \in *S*, *a* \in Γ and *k* \in *K*]. The term " Γ -ideal" refers to a two-sided Γ -ideal.

Proposition 2.5 [1]: The union of any family of Γ -ideals of Γ -semigroup S is a Γ -ideal of S.

Proposition 2.6.[7]: Let S be a Γ -semigroup. A Γ -ideal Q of S is called prime if for every two Γ -ideals K, L of S with $K\Gamma L \subseteq Q$, either $K \subseteq Q$ or $L \subseteq Q$.

Proposition 2.7.[7]: Let S be a Γ -semigroup. A Γ -ideal K of S is called maximal if it is proper and is not properly contained in any proper Γ -ideal of S.

Definition 2.8.[8]: Let S be Γ -semigroup and $\alpha \in \Gamma$. An element *a* in S is said to be left (right) α -cancellative if $a\alpha b = a\alpha c$ ($b\alpha a = c\alpha a$) implies b = c for all $b, c \in S$.

Definition 2.9.[8]: Let S be Γ -semigroup. An element *a* in S is said to be left (right) Γ -cancellative if *a* is left (right) *a*-cancellative for all $\alpha \in \Gamma$.

Definition 2.9.[3]: Let S be a Γ -semigroup. A non-empty set A is called left gamma act over S (briefly, S_{Γ} -act) if there exists a mapping: $S \times \Gamma \times A \rightarrow A$ defined by $(s, \alpha, a) \mapsto s\alpha a$, satisfying $(s_1\alpha s_2)\beta a = s_1\alpha(s_2\beta a)$ for all $s_1, s_2 \in S$, $\alpha, \beta \in \Gamma$ and $a \in A$.Similarly, right gamma acts can be defined.

The concept of acts over semigroups is generalized to the following:

Definition 2.10.[3]: A nonempty subset **B** of left S_{Γ} -act **A** is said to be gamma subact (briefly, S_{Γ} -subact) if for all $s \in S$, $\alpha \in \Gamma$ and $b \in B$ implies that $s\alpha b \in B$.

Definition 2.11.[3]: Let A be a S_{Γ}-act. An element $\theta \in A$ is said to be a zero of A if $s\alpha\theta=\theta$ and if S is a Γ -semigroup with zero then $0\alpha a=\theta$ for all $a \in A$ and $\alpha \in \Gamma$.

Proposition 2.12.[3]: Let $\{B_i\}_{i \in I}$ be a family of S_{Γ} -subacts of S_{Γ} -act A. Then, $\bigcup_{i \in I} B_i$ is S_{Γ} -subact of A, and if $\bigcap_{i \in I} B_i$ is nonempty then $\bigcap_{i \in I} B_i$ is S_{Γ} -subact of A. For S_{Γ} -acts A and B. Amapping

 $f: A \to B$ is called S_{Γ} -homomorphism if $f(s\alpha a) = s\alpha f(a)$ for all $s \in S$, $\alpha \in \Gamma$ and $a \in A$. If f is surjective, then f is S_{Γ} -epimorphism.

Definition 2.13.[3]: Let ρ be a equivalence relation on S_{Γ} -act **A**. Then ρ is called a congruence if for all $(m_1, m_2) \in \rho$ then $(s\alpha m_1, s\alpha m_2) \in \rho$ for all $s \in S$, $\alpha \in \Gamma$. The quotient gamma act of the congruence ρ on A is denoted by A/ρ define by $A/\rho = \{a\rho | a \in A \text{ and } a\rho \text{ the equivalent class containing}a\}$.

Definition 2.14.[9]: Let S be Γ -monoid and A be a S_{Γ}-act. For $s \in S$ and $\alpha \in \Gamma$. An element $a \in A$ is called α -divisible by s in A if there exists $b \in A$ such that $s\alpha b = a$.

An S_{Γ}-act A is said to be α -divisible if $c\alpha A = A$ for any right α -cancellative element $c \in S$. More generally, S_{Γ}-act A is called a Γ -divisible if $c\alpha A = A$ for all right Γ -cancellative element $c \in S$.

Definition 2.15.[3]: A proper S_{Γ} -subact B of S_{Γ} -act A is a prime if for any $a \in A$ and $s \in S$, the set inclusion $s\Gamma S\Gamma a \subseteq B$ implies either $a \in B$ or $s \in [B_{:S}A]$.

Definition 2.16.[9]: Let A be a S_{Γ} -act and C be a S_{Γ} -subact of A. A prime S_{Γ} -subact B of A is called a minimal prime of C if $C \subseteq B$ and there is no prime S_{Γ} -subact B' such that $C \subseteq B' \subset B$. A prime Γ -ideal P of Γ -semigroup S is minimal if it's minimal prime S_{Γ} -subact of S_{Γ} -act S.

Proposition 2.17.[8]: Let A be an S_{Γ} -act, and ρ bs a congruence on A. Then

- i. if $B \le A$, then $B / \rho_B \le A / \rho$
- ii. if $W \le A / \rho$, then there exist $L \le A$ such that $W = L / \rho_L$, where $\rho_L = \rho \cap (L \times L)$.

Definition 2.18.[10]: Let S be a Γ -monoid and A be a S_{Γ}-act. Then the set all of its S_{Γ}-endomorphisms $End_{S}(A)$ is a Γ -monoid with respect to the product given by mapping: $End_{S}(A) \times \Gamma \times End_{S}(A) \longrightarrow End_{S}(A)$ defined by $(f, \alpha, g) \mapsto f \alpha g$, where $(f\alpha g)(a) = g(1\alpha f(a))$ where $f, g \in End_{S}(A)$, $\alpha \in \Gamma$ and $a \in A$.

Definition 2.19.[10]: Let S be a Γ -semigroup and A be a S_{Γ}-act with *s*, *r* \in S. Then A is called

- i. Faithful if the equality saa = raa implies that s = r for every $a \in A$ and $\alpha \in \Gamma$.
- ii. Strongly faithful (briefly, st-faithful) if for $\alpha \in \Gamma$ the equality $s\alpha a = r\alpha a$ for some $a \in A$ implies that s = r.
- iii. Globally faithful (briefly, gl-faithful) if the equality $s\Gamma a = r\Gamma a$ for all $a \in A$ implies that s = r.

Let **B** and C be S_{Γ} -subacts of S_{Γ} -act **A**. Then the residual Γ -ideal of B by C is defined as, $[\mathbf{B}_{:\mathbf{S}} \mathbf{C}] = \{ s \in S | sac \in \mathbf{B} \text{ for all } a \in \Gamma \text{ and } c \in C \}$. In a special case in which $\mathbf{B} = \mathbf{0}$, the Γ -ideal $[\mathbf{0}_{:\mathbf{S}} \mathbf{C}]$ is called annihilator of C and it is denoted by $ann_{\mathbf{S}}(C)$. For the Γ ideal K of S the S_{Γ} -subact $[\mathbf{0}_{:\mathbf{A}}\mathbf{K}]$ is called the annihilator of K in A and it is denoted by $ann_{\mathbf{A}}(\mathbf{K})$.

Definition 2.20.[4]: Let A be a S_{Γ} -act over Γ -semigroup S. Then A is called multiplication S_{Γ} -act if for all S_{Γ} -subact B of A has the form B=K Γ A for some Γ -ideal K of S. Equivalently, S_{Γ} -act A is multiplication if and only if B= [B:_S A] Γ A for all S_{Γ} -subact of A.

Consider A is a S_Γ-act and Q is a maximal Γ-ideal of Γ-monoid S, then we define: $\mathbf{T}_{\mathbf{Q}}(A) = \{ \boldsymbol{a} \in A : \boldsymbol{a} = \boldsymbol{q} \boldsymbol{\alpha} \boldsymbol{a} \text{ for some } \boldsymbol{q} \in Q \text{ and } \boldsymbol{\alpha} \in \Gamma \}$. Clearly, $\mathbf{T}_{\mathbf{Q}}(A)$ is an S_Γ-subact of A. An S_Γ-act A is Q-cyclic provided there exist $\boldsymbol{p} \in S \setminus Q$ such that $\boldsymbol{p} \Gamma A \subseteq S \Gamma \boldsymbol{a}$, for all $\boldsymbol{a} \in A$. [4]

Theorem 2.21.[4]: Let S be a Γ -monoid. Then A is a multiplication S_{Γ} -act if and only if for every maximal Γ -ideal Q of S, either $A = T_Q(A)$ or A is Q-cyclic.

Proposition 2.22.[4]: Let S be a Γ -monoid and A be a faithful S_{Γ} -act. Then A is a multiplication if and only if K Γ A is a multiplication S_{Γ} -subact of A for all multiplication Γ -ideal K of S

The following Lemma that will needed in our work.

Lemma 2.23.[8]: Let K be a Γ -ideal of Γ -semigroup S. Then for any collection of Γ -ideals { $L_i: i \in I$ } of S, we have

- i. $[K: \bigcup_{i \in I} L_i] = \bigcap_{i \in I} [K: L_i].$
- **ii.** $[\bigcap_{i \in I} L_i: K] = \bigcap_{i \in I} [L_i: K].$

3. Main Results.

In this section the notion of a multiplication gamma acts was dualize to obtain a comultiplication gamma acts and basic related properties which are introduced in our work

Definition 3.1. An S_{Γ}-act A is said to be a co-multiplication if for all S_{Γ}-subact B of A there exists a Γ -ideal K of Γ - semigroup S, such that B = [θ :_A K].

Examples 3.2.

i. Let $S=A=\{x, y, z\}$ and $\Gamma=\{\alpha, \beta\}$. Then A is an S_{Γ} -act by the mapping: $S \times \Gamma \times A \rightarrow A$ defined by the following tables:

α	x	y	Ζ	β	x	y	Z
x	x	x	x	x	x	x	x
y	x	x	x	y	x	x	y
Z	x	y	x	Z	x	y	x

Here, $B_1 = \{x\}$, $B_2 = \{x, y\}$ and $B_3 = A$ are S_{Γ} -subacts of A. It can be easily seen that A is co-multiplication.

- ii. Let $S = \Gamma = A = \{ i, 0, -i \}$. Then S is a Γ -semigroup under the multiplication over complex numbers. Here $B_1 = \{0\}$ and $B_2 = S$, are the only Γ -ideals of S. Thus, A is co-multiplication.
- iii. Let S = A ={ Ø, {a}, {b}, {a,b}} and Γ={Ø, {a}}. Then A is an S_Γ-act by the mapping: S × Γ × A → A written by (A, B, C) → A∩B∩C. Here, A is not co-multiplication, since N{Ø, {b}} is S_Γ-subact of A and all Γ-ideals of S are: {Ø},{Ø,{a}}, S with N ≠ [Ø:_AK] for every Γ-ideals K of S.

4. For all a congruence ρ on S_{Γ}-act A. Then A is a co-multiplication if and only if A/ ρ is S_{Γ}-act.

Lemma 3.3. An S_{Γ}-act A is a co-multiplication if and only if for each S_{Γ}-subact B of A, B = [θ :_A ann_S(B)].

Proof: (⇒

⇒) Clear.

(⇐) Suppose that A is a co-multiplication. Then there exists a Γ-ideal K of S, such that $B = [\theta_{A} K]$. Thus, K⊆ ann_S(B) so that $[\theta_{A} ann_{S}(B)] \subseteq [\theta_{A} K] = B$. This yields that $B = [\theta_{A} ann_{S}(B)]$.

Example 3.4. Let $S = \Gamma = \mathbb{Z}$ and $A = \mathbb{Z}_8$. Then A is S_{Γ} -act under the usual of multiplication of integer numbers. Let $B = \{\overline{0}, \overline{4}\}$ be S_{Γ} -subact of A. Clearly, $[\overline{0}: ann_S(B)] = S$. Thus, S is not a co-multiplication.

The following example shows that not every co-multiplication S_{Γ} -act is a multiplication S_{Γ} -act.

Example 3.5. Let $S = \Gamma = \mathbb{Z}$. Then S is an S_{Γ} -act. Consider $B = S\Gamma(2)$ as S_{Γ} -subact of S_{Γ} -act S. Then $B = [0:_S \operatorname{ann}_S(B)]$. Therefore, S is not a co-multiplication S_{Γ} -act. But \mathbb{Z} is a multiplication S_{Γ} -act.

Proposition 3.6. Let A be an S_{Γ}-act and B_1 , B_2 be co-multiplication S_{Γ}-subacts of A then B₁ \cap B₂ is co-multiplication S_{Γ}-subact of A.

Proof: Let $B_1 = [\theta_{:A} \operatorname{ann}_S(B_1)]$ and $B_2 = [\theta_{:A} \operatorname{ann}_S(B_2)]$. Then $B_1 \cap B_2 = [\theta_{:A} \operatorname{ann}_S(B_2)] \cap [\theta_{:A} \operatorname{ann}_S(B_2)] = [\theta_{:A} \operatorname{ann}_S(B_1) \cup \operatorname{ann}_S(B_2)]$. Hence, $B_1 \cap B_2$ is a co-multiplication S_{Γ} -subact of A.

Proposition 3.7. Let *T* be a Γ -subsemigroup of a Γ -semigroup S and A be an S_{Γ} -act. If A is a co-multiplication T_{Γ} -act, then A is a co-multiplication S_{Γ} -act. **Proof:** Let B be S_{Γ} -subact of A. Then B is a T_{Γ} -subact of A. Thus B= [θ :_A K] for some Γ -ideal K of T. Hence, A is a co-multiplication S_{Γ} -act.

Lemma 3.8. Let A, B be a S_{\(\Gamma\)}-acts and $\phi: A \to B$ be a S_{\(\Gamma\)}-epimorphism with K is a Γ -ideal of a Γ -semigroup S. Then $\phi([\theta:_A K]) = [\theta:_B K]$.

Proposition 3.9. Every homomorphic image of a co-multiplication S_{Γ} -act is a co-multiplication.

Proof: Let A, B be a S_{\(\Gamma\)}-acts and ϕ : A \rightarrow B be an S_{\(\Gamma\)}-epimorphism. Assume that, A is co-multiplication and C is an S_{\(\Gamma\)}-subact of B. Then $\phi^{-1}(C)$ is S_{\(\Gamma\)}-subact of A, then there exists a \(\Gamma\)-ideal K of S such that $\phi^{-1}(C) = [\theta :_A K]$. Hence, $\phi(\phi^{-1}(C)) = \phi([\theta :_A K])$. Thus, by Lemma 3.8; K= $[\theta :_B K]$.

Theorem 3.10. Let S be a Γ -monoid and A be a S_{Γ} -act. Then the following are equivalent.

Let A be a S_Γ-act and $f : A \to A$ be a S_Γ-endomorphism on A then we say that f is a S_Γ-homothety if there exists $s \in S$ such that f(a) = saa for every $a \in A$ and $a \in \Gamma$.

Let B be a S_Γ-subact of S_Γ-act A. Then B is called second S_Γ-subact of A if for each $s \in S$ the S_Γ-homothety f_s : B \rightarrow B is either surjective or zero.

- **i.** A is a co-multiplication S_{Γ} -act.
- ii. For all S_{Γ} -subact B of A and Γ -ideal K of a Γ -semigroup S with $B \subset [\theta :_A K]$, there exists a Γ -ideal L of S such that $K \subset L$ and $B = [\theta :_A L]$.
- iii. For every S_{Γ} -subact B of A and Γ -ideal K of a Γ -semigroup S with $B \subset [\theta :_A K]$, there exists a Γ -ideal L of S such that $K \subset L$ and $B \subseteq [\theta :_A L]$.

Proof:

- (i) \Rightarrow (ii) Let B be a S_Γ-subact of A and K be a Γ-ideal of a Γ-semigroup S, such that $B \subset [\theta_{:A} \ K]$. Since A is a co-multiplication, $B = [\theta_{:A} \ ann_{S}(B)]$. Suppose $L=K \cup ann_{S}(B)$. Since $B = [\theta_{:A} \ ann_{S}(B)] \subset [\theta_{:A} \ K]$, $ann_{S}(B) \not \subset K$. Hence, K $\subset L$ and we have $[\theta_{:A} \ L] = [\theta_{:A} \ K \cup ann_{S}(B)] = [\theta_{:A} \ K] \cap [\theta_{:A} \ ann_{S}(B)] = B$.
- (ii) \Rightarrow (iii) Clear.
- (iii) \Rightarrow (i) Let B be a S_{\Gamma}-subact of A and H={D: D is a \Gamma-ideal of S and B\sigma [θ :A D]}. Clearly, $0 \in H$. Let {K_i : i $\in I$ } be any non-empty collection of Γ -ideals in H. Thus, $\bigcup_{i \in I} K_i \in H$. By the Zorn's Lemma, H has a maximal member P such that B \subseteq [0 :_A P]. Assume that B \neq [0 :_A P]. Then by (iii), there exists a Γ -ideal L with P \subset L and B \subseteq [0 :_A L]. But this is a contradiction by the choice of P. Thus, B =[0:_AP] and hence A is a co-multiplication S_{\Gamma}-act.

Theorem 3.11. Let S be a commutative Γ -monoid and A be a co-multiplication S_{Γ} -act. If B is a S_{Γ} -subact of A such that $ann_{S}(B)$ is a prime Γ -ideal of S, then B is a second S_{Γ} -subact of A.

Proof: Since A is a co-multiplication S_{Γ} -act, then $B = [\theta_{:M} ann_{S}(B)]$. Let $s \in S$ and $f_{s}: B \to B$ be the nonzero S_{Γ} -homomorphism defined by $f_{s}(a) = saa$ for every $a \in A$ and $a \in \Gamma$. Let $D = \text{Im } f_{s} = s\Gamma B$. Clearly, $D \subseteq B$. By Theorem 3.10, there exists a Γ -ideal K of S, such that $ann_{S}(B) \subset K$ and $D = [\theta_{:A} K]$. Thus $K\Gamma(s\Gamma B) = K\Gamma D = \theta$. It follows that $K\Gamma s \subseteq ann_{S}(B)$. Since $ann_{S}(B)$ is a prime Γ -ideal of S and $ann_{S}(B) \subset K$, we have $s \in ann_{S}(B)$ so that $s\Gamma B = \theta$; a contradiction. Hence, B is a second S_{Γ} -subact of M.

Corollary 3.12. Let S be a commutative Γ -semigroup and A be a co-multiplication S_{Γ} -act. Then B is second S_{Γ} -subact of A if and only if *ann*₅(B) is a prime Γ -ideal of S.

Proposition 3.13. Let A be a co-multiplication S_{Γ} -act.

i. Let $\{B_i, i \in I\}$ be a nonempty collection of S_{Γ} -subacts of S_{Γ} act A with $\bigcap_{i \in I} B_i = \theta$. Then for every S_{Γ} -subact B of A, we have $B = \bigcap_{i \in I} (B \cup B_i)$.

ii. Let P be a minimal Γ -ideal of S, such that $[\boldsymbol{\theta} :_A P] = \boldsymbol{\theta}$. Then A is cyclic. **Proof:**

- i. Let B be a S_{Γ} -subact of A. Then $B = [\theta :_A ann_S(B)] = [\bigcap_{i \in I} B_i :_A ann_S(B)] = \bigcap_{i \in I} [B_i :_A ann_S(B)]$. Now, let $x \in B \cup B_i$, then $x \in B$ or $x \in B_i$. If $x \in B$ then $ann_S(B)\Gamma x \subseteq B_i$. Thus $x \in [B_i :_A ann_S(B)]$. If $x \in B_i$, then $ann_S(B)\Gamma x \subseteq B_i$ and hence $x \in [B_i :_A ann_S(B)]$. Thus, $\bigcap_{i \in I} (B_i \cup B) \subseteq \bigcap_{i \in I} [B_i :_A ann_S(B)] = B$. Also, $B \subseteq \bigcap_{i \in I} (B_i \cup B)$. Therefore, $B = \bigcap_{i \in I} (B_i \cup B)$.
- **ii** Let $\theta \neq a \in A$. Since A is a co-multiplication S_{Γ} -act, there exists a Γ -ideal K of S such that $S\Gamma a = [\theta_{:A} K]$. Thus $S\Gamma a = [\theta_{:A} K] = [[\theta_{:A} P]_{:A} K] = [\theta_{:A} P\Gamma K]$. Since P is a minimal Γ -ideal of S and $\theta \subseteq P\Gamma A \subseteq P$, we have $P\Gamma A = \theta$ or $P\Gamma A = P$. If $P\Gamma A = P$, then $S\Gamma a = [\theta_{:A} P\Gamma A] = [\theta_{:A} P] = \theta$. Hence $a = \theta$; a contradiction. If $P\Gamma A = \theta$, then $S\Gamma a = A$. Therefore, A is cyclic.

Theorem 3.14. Let S be a Γ -semigroup and A be a co-multiplication S_{Γ} -act. Then the following are hold.

- i. Every S_{Γ} -subact of A is co-multiplication.
- ii. Every S_{Γ} -subact of A is fully invariant.
- iii. If A is a gl-faithful S_{Γ} -act, then A is Γ -divisible.

Proof:

- i. Let A be a co-multiplication S_{Γ} -act and B be a S_{Γ} -subact of A. If C is a S_{Γ} -subact of B, then there exists a Γ -ideal K of Γ -semigroup S such that $K = [\theta:_A K] = [\theta:_B K]$. Therefore, B is co-multiplication S_{Γ} -subact.
- ii. Let B be a S_{Γ} -subact of a co-multiplication S_{Γ} -act A. Then there exists a Γ -ideal K of S such that $B = [\theta:_A K]$. Suppose that $f: A \to A$ be an S_{Γ} -endomorphism. Since $K\Gamma B = \theta$, $K \subseteq ann_s(f(B))$. Then $[\theta:_A ann_s(f(B))] \subseteq [\theta:_A K] = A$. This implies that $f(B) \subseteq B$.
- iii. Let $c \in S$ be a right Γ -cancellative element. Then $c\Gamma A = [\theta:_A K]$ for some Γ -ideal K of S. Thus $K\Gamma(c\Gamma A) = \theta = 0\Gamma A$. By hypothesis, $K\Gamma c = 0$. Since c is right Γ -cancellative then K=0. Hence, $c\Gamma A = A$.

Proposition 3.15. Let S be a commutative Γ -monoid and A be a S_{Γ}-act. Then the set all S_{Γ}-endomorphisms of A, *End*_S(*A*) is a commutative Γ -monoid. **Proof:**

Let $f, g \in End_S(A)$ and let $a \in A$. Then $f(a) \in f(S\Gamma a)$ and $g(a) \in g(S\Gamma a)$. By part (i), $f(S\Gamma a) \subseteq S\Gamma a$ and $g(S\Gamma a) \subseteq S\Gamma a$. So, $f(a), g(a) \in S\Gamma a$. Thus there exist $s, t \in S$ and $\alpha, \beta \in \Gamma$ such that $f(a) = s\alpha a$ and $g(a) = t\beta a$. Hence, $(fg)(a) = f(g(a)) = f(t\alpha a) = t\alpha f(a) =$ $t\alpha(s\gamma a) = (s\alpha t)\gamma a = s\alpha(t\gamma a) = s\alpha g(a) =$ $g(s\alpha a) = g(f(a)) = (gf)(a)$. Therefore, $End_S(A)$ is commutative Γ -monoid.

Proposition 3.16. Let S be a Γ -monoid and A be S_{Γ}-act

- i. If A is a co-multiplication S_{Γ} -act and B is a S_{Γ} -subact of A with $ann_5(B) = ann_5$ (A), then A is a simple S_{Γ} -act.
- ii. If A is a multiplication S_{Γ} -act A and B is a S_{Γ} -subact of with [B:A]=S. Then A is a simple S_{Γ} -act.

Proof:

- i. By hypothesis and Lemma 3.3, $B = [\theta :_A ann_5(B)] = [\theta :_A ann_5(A)] = A$. Therefore, A is a simple S_{Γ} -act.
- ii. Since A is a multiplication S_{Γ} -act then B=[B:A] Γ A. Thus B=[B:A] Γ A=S Γ A=A.

Corollary 3.17. Let S be a Γ -monoid and A be a faithful multiplication and comultiplication S_{Γ}-act. Then A is simple.

Proposition 3.18. Let S be a Γ -semigroup and A be a co-multiplication S_{Γ} -act with a nonempty collection of S_{Γ} -subacts $\{B_i, i \in I\}$ of A. Then $[\theta_{:_A} \cap_{i \in I} ann_S(B_i)] = \bigcup_{i \in I} [\theta_{:_A} ann_S(B_i)]$.

Proof: By hypothesis, $B_i[\theta_A ann_S(B_i)]$ for all $i \in I$. Also $\bigcup_{i \in I} B_i = [\theta_A ann_S(\bigcup_{i \in I} B_i)]$. Now, by Lemma 2.23; $\bigcup_{i \in I} B_i = [\theta_A ann_S(\bigcup_{i \in I} B_i)] = [\theta_A \cap_{i \in I} ann_S(B_i)]$. On other hand $\bigcup_{i \in I} B_i = \bigcup_{i \in I} [\theta_A ann_S(B_i)]$. So, $[\theta_A \cap_{i \in I} ann_S(B_i)] = \bigcup_{i \in I} [\theta_A ann_S(B_i)]$.

Corollary 3.19. Let A be a co-multiplication S_{Γ} -act and P,Q be a maximal Γ -ideals of a Γ -semigroup S with $[\theta_{:_A} P]$, $[\theta_{:_A} Q]$ are nonzero S_{Γ} -subacts of A. Then $[\theta_{:_A} P] \cup [\theta_{:_A} Q] = [\theta_{:_A} P \cap Q]$.

Proof: Put $K = [\theta_{:A}P]$. Then $P\Gamma K = \theta$ and hence $P \subseteq ann_{5}(K)$. Since P is maximal Γ -ideal of S, then $P = ann_{5}(K)$. Similarly, if $L = [\theta_{:A}Q]$, $Q = ann_{5}(K)$. By Proposition 3.18, $[\theta_{:A}P] \cup [\theta_{:A}Q] = [\theta_{:A}P \cap Q]$.

Lemma 3.20. Let S be a Γ -monoid and B be a S_{Γ} -subact of S_{Γ} -act A. Then $\left[\theta_{:A}\left[0:_{S}[B:_{S}A]\right]\right] = [B:_{S}A]\Gamma A.$

Proof: $\left[\theta_{A}\left[0:_{S}\left[B:_{S}A\right]\right]\right] \subseteq A = S\Gamma A = (S\Gamma[B:_{S}A])\Gamma A \subseteq [B:_{S}A]\Gamma A$. Let $x \in [B:_{S}A]\Gamma A$, then $x = s\alpha a$ such that

 $s \in [B_{:s}A], \alpha \in \Gamma \text{ and } a \in A. \text{ Now, } \left[0:_{s}[B:_{s}A]\right]\Gamma x=\left[0:_{s}[B:_{s}A]\right]\Gamma (s\alpha m) = \left(\left[0:_{s}[B:_{s}A]\right]\Gamma s\right)\alpha m = 0\alpha m = \theta. \text{ Thus, } x \in \left[\theta:_{A}\left[0:_{s}[B:_{s}A]\right]\right].$

Theorem 3.21. Let S be a Γ -monoid and A be a multiplication S_{Γ} -act. Then A is comultiplication S_{Γ} -act. The convers is true if S is co-multiplication as an S_{Γ} -act. **Proof**: Let P be S_{Γ} subset of A. Then P_{Γ} [P: A] Γ A. By Lemma 2.20. [A. [O, [P]:

Proof:Let B be S_Γ-subact of A. Then B= $[B:_{S}A]\Gamma A$. By Lemma 3.20, $[\theta:_{A}[0:_{S}[B:_{S}A]]] = [B:_{S}A]\Gamma A = B$. Thus A is co-multiplication.

Conversely, since S is co-multiplication then $ann_s(B) = ann_s(ann_s(ann_s(B)))$. Since A is a co-multiplication S_{Γ} -act and By Lemma 3.20, $B = [\theta :_A ann_s(B)] = [\theta :_A ann_s(ann_s(B))] = (ann_s(ann_s(B))) \Gamma A$. Thus, A is a multiplication S_{Γ} -act.

Corollary 3.22. If A is a multiplication S_{Γ} -act, then K Γ A is a co-multiplication S_{Γ} -act for all multiplication Γ -ideal K of Γ -monoid S. **Proof:** As is easily by Proposition 2.22 and Theorem 3.21.

Theorem 3.23. Let S be a Γ -monoid and A be an S_{Γ}-act. Consider the following conditions:

- i. A is a co-multiplication S_{Γ} -act
- ii. $B = [\theta :_A ann_s(B)]$ for each S_{Γ} -subact B of A.
- iii. For S_{Γ}-subact K and L of A; $ann_5(K) \subseteq ann_5(L)$, then $L \subseteq K$.
- iv. For S_{Γ} -subact K and $a \in A$; $ann_{s}(K) \subseteq ann_{s}(S\Gamma a)$, then $a \in K$.
- **v.** For S_{Γ} -subact B of A and $a \in A$ with $ann_{5}(B) \subseteq ann_{5}(S\Gamma a)$, then $[B:_{5}S\Gamma a]$ is not maximal Γ ideal of S.

Then: $i \rightarrow ii \rightarrow iii \rightarrow iv \rightarrow v$.

Proof: $i \Rightarrow ii$ By Lemma 3.3.

 $ii \Rightarrow iii \Rightarrow iv$ Clear.

iv \Rightarrow v Let B be a S_{\(\Gamma\)}-subact of A and $a \in A$ with $ann_{S}(B) \subseteq ann_{S}(S\Gamma a)$. By hypothesis $a \in B$, thus S_{\(\Gamma\)} $\cong B$ and hence S_{\(\Gamma\)} $\cong B$. Since B \subseteq S_{\(\Gamma\)} $\subseteq S\Gamma A$. Therefore, [B:_S S_{\(\Gamma\)}] $\cong S$ which implies [B:_S S_{\(\Gamma\)}] is not maximal Γ -ideal.

Corollary 3.24. Let S be a Γ -monoid and K, L be S_{Γ} -subacts of co-multiplication S_{Γ} -act A. Then $K \subseteq L$ if and only if there exists a S_{Γ} -monomorphism $f: K \to L$. Moreover, K=L if and only if $[\theta :_S K] = [\theta :_S L]$.

Proof: (\Rightarrow) Clear. (\Leftarrow) Let $f: K \to L$ be a S_Γ-monomorphism .Then $K \cong f(K)$ and hence $[\theta:_S K] = [\theta:_S f(K)]$. By Theorem 3.23, $K = f(K) \subseteq L$

Lemma 3.25 Let K be a Γ -ideal of Γ -monoid S and A be a S Γ -act. If A is faithful multiplication, then K=[K Γ A:A]

Proof: Let $k \in K$. Then $k\Gamma A \subseteq K\Gamma A$. Hence, $k \in [K\Gamma A:A]$. Conversely, suppose $s \in [K\Gamma A:A]$ then $s \Gamma A \subseteq K\Gamma A$ and hence for all $\alpha \in \Gamma$, $a \in A$ there exists $k \in K$, $\beta \in \Gamma$ and $a \in A$ such that $s\alpha a = k\beta a$ that is $s\alpha a = k\beta a$ for all $\alpha \in \Gamma$, $a \in A$. In particular $s\beta a = k\beta a$. By faithfulness of A, we have s = k. So, $s \in K$. Therefore, $K = [K\Gamma A:A]$.

Theorem 3.26. Let S be a Γ -monoid and A be a faithful multiplication and comultiplication S_{Γ}-act, then the following statements hold.

- i. for all S_{Γ} -subact B of A, [B:_S A] is a co-multiplication Γ -ideal of S,
- **ii.** A Γ -monoid S is a co-multiplication as an S_{Γ} -act.

Proof

- (i) Let B be a S_{\[\Gamma]}-subact of S_{\[\Gamma]}-act A. Then there exists a Γ -ideal K of S such that $B = [\theta :_A K]$, thus $[B:_S A] = [[\theta :_A K]:_S A] = [\theta :_S K\Gamma A] = ann_S(K\Gamma A)$.
- (ii) Let K be a Γ -ideal of S, put B=K Γ A is S_Γ-subact of A. Since A is faithful multiplication S_Γ-act. Then for every S_Γ-subact of A and every Γ -ideal of S; [B:s A]=[K Γ A :s A]=K (Lemma 3.25). By (i), K is a co-multiplication ideal.

Conclusion:

In this paper, a generalization of multiplication gamma acts was presented. In the module theory, this concept is studied in a different way from how it was in this paper. Some basic results and properties of this concept were discussed. Since every co-multiplication gamma acts is multiplication gamma acts, to achieve them, several additional conditions were introduced.

References

- [1] Sen M.K. and Saha N.K. (1988) On Γ Semigroups-III. Bull. Calcutta Math. Soc., 80(1): 1-12.
- [2] Chinram R. and Jirojkul C. (2007) On bi-Γ-ideal in Γ-Semigroups. Songklanakarin J. Sci. Tech., 29(3): 231-234.
- [3] Abbas M.S. and Faris A. (2016) Gamma Acts. International Journal of Advanced Research.; 4 (6) :1592-1601.
- [4] Abbas M.S. and Jubeir S.A. (2021) On the gamma spectrum of multiplication gamma acts. Kuwait J of Sci., 48(2): 2-11.
- [5] Abbas M.S. and Jubeir S.A. (2020) Idempotent and Pure Gamma Subacts of Multiplication Gamma Acts. IOP Conf. Ser.: Mater. Sci. Eng.,871 :1-13.
- [6] Abbas M.S. and Jubeir S.A. (2021). The product of Gamma Subacts of Multiplication Gamma Act. J Phys. Conf. Ser., 1804: 1-8.
- [7] Anjaneyulu A., Gangadhara A. and D. Madhusudhana (2011) Prime Radicals In Γ -Semigroups. International Journal of Mathematical and Engineering., 138(3): 1250–1259.
- [8] Rao A.G., Anjaneyulu A. and Rao M. (2012) Duo Chained Γ-semigroups. International Journal of Mathematical Science, Technology and Humanities, 50(3): 520-533.
- [9] Jubir S.A. (2020) Multiplication Gamma Acts. Ph.D. Thesis. Baghdad: Univ. of Al-Mustansiriyah.
- [10] Jubair S.A. (2023) Cancellation and Weak Cancellation S-Acts. Al-Bahir Journal for Engineering and Pure Sciences. 3 (1): 28-3.