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Abstract 

The exact expressions for stress-intensity factors at crack tips the and crack 

shape are obtained by using finite and integral Fourier transforms method 

while cracks are opened by symmetrical system of body forces in an 

infinite stress-free orthotropic strip. It is found that normal stress 

components possess Cauchy type singularity at crack tips while 

displacement is smooth. 
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1. INTRODUCTION 

Now–a-days composite materials are replacing the natural found materials from 

use. It is found analytically [1] that composite materials can be assumed as 

orthotropic continuum. The body forces in the medium are simulated by rivets or 

stiffeners used in structures. 

Sneddon and Tweed [2, 3] and Tweed [4, 5] had solved the problems of crack 

opening in isotropic infinite medium due to body forces. Parihar and Kushwaha 

[6] had extended to rigidly lubricated strip. Kushwaha [7] extended to rectangular 

domain. Singh et.at. [8] had extended the problem to stress-free infinite 

orthotropic strip for an interior Griffith crack. Kushwaha and Jha [9] extended the 

problem of [8] to two interior Griffith cracks. 

It is difficult to make interior cracks and then perform experiment. Therefore it is 

the need for further work. In the present research endeavour it is done for two 

similar exterior Griffith-cracks. It is easy to make exterior cracks by wedging. 



12 Hari Om Jha 

Physically the cracks occupy the region y = 0, b x a  , while the strip is of width 

2a and the cracks lie over x-axis. y-axis passes through the middle of the strip. The 

cracks are of length ( ),a b  see figure 1. 

 

 

Figure 1. Stress-free orthotropic strip in the presence of Body Forces (X, Y). 

 

It is assumed that plain-strain conditions prevail. The axes of material symmetry 

coincides with co-ordinate axes. The over all symmetry of problem reduces to 

solution domain as [0, ] [0, )a   . The physical problem is reduced to all following 

mixed-boundary value problem. 

( , ) ( , ) 0,xx xya y a y a y       (1.1) 

( ,0) 0, 0xy x x a     (1.2) 

( ,0) 0,yy x b x a     (1.3) 

( ,0) 0, 0yu x x b    (1.4) 

The problem of finding the components of stress and of displacement at general point 

( , )x y  is divided into two. Namely (a) Body Force Problems (b) Elasticity Problem. 

Therefore, 

( ) ( )( , ) ( , ) ( , ), , ,b e
ij ij ijx y x y x y i j x y      
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( ) ( )( , ) ( , ) ( , ), ,b e
i i iu x y u x y u x y i x y    (1.5) 

Where super scripts (b) or (e) over quantities refere to body force problem or 

elasticity problem, respectively. 

It is being checked through out the analysis, see Burniston [10], 

( ,0) 0,yu x b x a    (1.6) 

The plan of the paper is as follows : In section 2 the problem is formulated. The 

section 3 will reduce the problem to dual series equation. Solution of this series 

equation will be reduced to Fredholm integral equation of second kind in section 4. 

The physical quantities will be reported, in terms of solution of Fredholm integral 

equation, in section 5. A special case of body force will be given in section 6. There 

will be graphs of stress-intensity factors and of crack shape. Discussion and 

conclusion will be in section 7. The references will be in the last. 

 

2. FORMULATION 

The body forces in the medium are producing stresses in the medium and specially at 

0,y   the normal stress produced will cause the cracks to open. Thus the body force 

problem is done first. 

 

Body Force Problem 

The equations of equilibrium in the presence of body forces and no crack in the 

medium, is solved by taking appropriate finite Fourier transform with respect to x and 

Fourier integral transform w.r.t. y. 

The equations of equilibrium 

0, 0
xy xy yyxx

x y x y
X Y

  
     

   
 (2.1) 

When (X, Y) are body force components and   is mass density of the medium. The 

stress-strain relations are 

11 12

12 22

66

0

0

0 0

xx xx

yy yy

xy xy

e a a
e a a

ae

    
    

     
            

 (2.2) 

When 11 16~a a  are elastic constants & exx etc, are strain components. Taking finite 

sine transform w.r.f. x and cosine integral transform w.r.t. y of Ist of (2.1), and finite 

cosine & integral sine transfer of 2nd of (2.1), then obtain the values of , ,xx xy yy    

from (2.2) we after Fourier inversion 
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( )
1 2

0
1

( , ) 4 sin( ) cos( )( )b
x n sc cs

n
au x y x sy w X W Y ds






       (2.3) 

( ) ( ) ( )

1

( , ) ( , ) 4 cos( ) ( , )b b b
y yc n yc n

n
au x y au a y x u y





        (2.4) 

2 3
0

( , ) sin( )( )yc n sc csu y sy w X w Y ds


    (2.5) 

with 

2 2 4 2 2 4
1 11 66 0 1 2

2 2
2 1 3 0 22 66

2
1 0 12 66 0 11 22 12

12 66 22
1 2

11 11

, ( 2 )

,

,

2
,

n n n

n n

ww a a s w s B s

ww s ww s a a

a a a a a
a a aB B

a a

        


       

      


 
 




 (2.6) 

Elasticity Problem 

The problem of crack opening in the medium is obtained by solving equations of 

equilibrium (2.1) with the absence of body forces. The method of Kushwaha [11] is 

used and thus the displacement components are given as 

( ) 2 2 2
11 12 66

0
1

1
( , ) (0, ) cos( ) [ , (2 ) , ] cos( )

2

e
y yc n n yyy n

n
u x y u y x a H a a H y s sy


 



        

 

 2
22 12[ , , ] ,xxx xa G a s s ds                  (2.7) 

( ) 2 2
11 12

1

( , ) sin( ) [ , ]e
x n n yy n

n
u x y x a H a H






     

                              2 2
22 12 66

0
sin( ) [ , (2 ) ]xxsy s a G s a a G ds

     (2.8) 

with, 

1 2

1 2 1 2

3 4 3 4 3 4

( ) ( , ) [( ) ]

( ) ( , ) [( ) ]cos( ) cos( )

n nr y r y
n n n nr r H y r r A B e e

r r G x s r r C D sr x D sr x

        


     
 (2.9) 

where 1 2,r r  and 3 4,r r  are roots of 

4 2 4 2
1 2 1 22 0, 2 0r B r B r B r B        (2.10) 

respectively. And  

1
1 11 66 22 2 2(2 ) / ,B a a a B B     (2.11) 

while B1 and B2 are defined in last of (2.6). 
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3. REDUCTION TO DUAL SERIES 

The geometrical symmetry and symmetrical system of body force will give 

( ) ( )( ,0) 0, ( ,0) 0, 0b b
xy yx u x x a      (3.1) 

( ) ( , ) 0, 0b
xy a y y      (3.2) 

Then using (1.5) and (3.1) – (3.2) in second of (1.1), (1.2), (1.4) it reduce to 

( ) ( ,0) 0, 0e
xy x x a     (3.3) 

( ) ( , ) 0, 0e
xy a y y      (3.4) 

( ) ( ,0) 0, 0e
yu x x b    (3.5) 

and (1.3) gives 

( ) ( )( ,0) ( ,0),e b
yy yyx x b x a      (3.6) 

Thus the series equations (3.5) and (3.6) constitutes the mixed-boundary value 

problem. Now making one of (2.7) – (2.8) and the relations (2.2) the boundary 

conditions (3.3) - (3.4) gives, 

1 n nr A B  (3.7) 

3 3 4 3

1

[ ( )sinh( )]

( )n

Cr r r ar s
D

P





 (3.8) 

1 3 3 4 4( ) sinh( ) sinh( )nP r ar s r ar s    (3.8)a 

The boundary condition first of (1.1) gives 

( )[ ( , )]( 1) / ( )b n
n n yycc n nC B s P       (3.9) 

2 2 2
3 3 3 3 4 4

1

[cosh( ) ( )cosh( )]
( )

( )

n n n
n

n

r ar r r r a r
P

P
    

 


 (3.10) 

Thus out of four constants , ; ( ), ( ),n nA B C s D s we obtained three relations (3.7) – (3.10) 

which will determine three constants interms of one constants i.e., Bn.  

Thus the mixed-boundary conditions (3.5) – (3.6) will reduce to 

0

1

cos( ) 0, 0 ,
2

n n
n

x x b





       (3.11) 

1

cos( ) ( ), ,n n n
n

x P x b x a




       (3.12) 

with 0 0, / ,n n nB A d      (3.13) 
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2 1 1 2 1 1 2

2 2
1 2 1 1 1 2 12 66 12 1

2 2
1 2 2 1 2 12 66 11 1 2 1 2

( ) /[ ( )]

( ) [( )( )]

( ) ( )[ ( )]

d d d r r r r r

r r d r r r a a a r

r r d r r a a a r r r r

    


     


       

 (3.14) 

( )

1

( ) ( ,0) cos( ) ( , )b
yy n n n

n
P x x x M x





       (3.15) 

2
3

0

3 2 2 1

2
3 3 4 1 3 4 4

22
34

2 2 2 2 2 2 2
4 3

( , ) ( 1) ( , )

( , ) ( ) ( , ) / ( )

( ) ( ) 2( ) cosh( )

( )

n
n n n

n n n

n
n n

M x f s x ds

f s x f s F s x F sa

r r r F sa r r s sar

rrf s
r s r s

     

   

  



   
    



 (3.16) 

2 2
2 4 4 3 4 3 3 0

( )3 3 4 4
0

0
3 3 4 3

( ) ( ) ( )

1

( , ) [ cosh( ) ( )cosh( )] ( )

cosh( ) cosh( )
( ) ( , )cos( )

( )cosh( )

4 1
( , ) (0, ) cos( ) ( )

2

n

b
xx

b b b
xx yyc n yyc n

n

yyc

F s x r sr x r r r sr x F sa

r sar r sar
F sa sa a y sy dy

r r r sar

x y y x
a







    

 
   

 

 
       

  







( )
20

( , ) cos( )[ , ]b
n cs scy sy w Y w X ds












   

 (3.15)b 

Thus the physical problem is reduced to dual series equations (3.11) – (3.15). 

 

4. SOLUTION OF DUAL SERIES 

The solution of dual series equation is obtained by the method of Parihar [12] we 

assume the trial solution as  

2 ( )sin( )
a

n n nb
g t t dt     (4.1) 

0 2 ( ) ( )
a

b
t a g t dt    (4.2) 

and then using the series 

1

/ 2,
sin( )cos

/ 4,
2

0,n

x y
x nx ny x y

n
x y





 


   
 

  (4.3) 

Then using (4.1) – (4.3) into (3.11) which satisfies it identically. Now it is assumed 

that 

( ) 0g a   (4.4) 
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There is no loss of generality. The substitution of (4.1) into (3.12) and using 

( )
sin

sin( )sin 1 2log
( )2

sin
2

n n

n

x yqx y
x yq q


 




  (4.5) 

and then using [12] to invert this 

02

2 cos( / 2)
( ) ( ) ( ) ( , )

( , )

a

b

qtg t t g s K s t ds
a G b c

   
    (4.6) 

with 

( )

0

sin( / 2) ( , ) ( ,0)
( )

( , )

b
a yy
b

qx G b x x dx
t

G x t


    (4.7) 

( , ) cos( ) cos( )G b t qb qt   (4.8) 

sin( / 2) ( , )
( , ) ( , )

( , )

a

b

qx G b x
K x t N s x dx

G x t
   (4.9) 

Where 

30
1

( , ) ( 1) sin( )cos( ) ( , )n
n n n n

n
N s x s x f x d

 



         (4.10) 

While 3f  is given in (3.15). The equation (4.6) is Fredholm integral equation of 

second kind. Thus the physical problem is reduced to solution (4.6). 

 

3. PHYSICAL QUANTITIES 

The physical quantities which are important in fracture mechanics are normal stress 

and then stress-intensity factor and the crack shape. 

 

Crack Shape 

The crack shape or crack opening displacement is obtained through the value of left 

hand side of (3.11) for b x a  . Using (4.1) - (4.3) in (3.11) it is given as 

( ) ( ,0) ( ) ( )
a ae

y x b
u x d g t dt g t dt   

     (5.1) 

where d is given by (3.14). 
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Normal Stress 

The normal stress 
( ) ( ,0)e
yy x  at y = 0 for 0 x b   is obtained through the values of 

series in left hand side of (3.12) after transforming ( )P x  on left hand side, and it is 

given as 

( )

1

( )sin( )2
( ,0) ( ) 0

( , )

ae n
yy b

g t t dtx F x x b
r G x t
 

     
  

  (5.2) 

( )
1( ) ( ,0) 2 ( ) ( , ) ,

ab
yy b

F x x g t F t x dt     (5.3) 

1

1

( , ) sin( )cos( ) ( , )n n n
n

F t x t x M x




     (5.4) 

Where in M ( , )n x  is given in (3.15). Now using the value of ( )g t  from (4.6) into 

(5.2) and evaluating the integrals it is given as 

( ) 1
1 0( ,0) [ ( )] ( ) ( ) ( , ) ( ) ,0

ae
yy c

x r x x g y K y x dy F x x b          
    (5.5) 

( , )
( )

cos( / 2)

G x b
x

qx
   (5.6) 

0 ( )x  is defined in (4.7). 

 

STRESS-INTENSITY FACTORS 

The stress-intensity factor at crack tip is defined as 

0
lim ( ,0)b yy

x
K b x x


    (5.7) 

The component ( ,0)yy x  does not possess square root singularity, therefore (5.7) will 

reduce to 

( )

0
lim ( ,0)e

b yy
x

K b x x


    (5.8) 

Now using (5.8) in (5.5) we get, 

1
1 1 1[ ( )] ( ),bK r b b   

1/ 2

1( ) 2 tan
2

qbb q  
    

    

(5.9) 

1 0( ) ( ) ( ) ( , )
a

b
b b g y K y b dy      (5.10) 

where the function ( )F x  does not possess singularity at crack tips. 
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6. A SPECIAL TYPE OF BODY FORCE 

The point body force is assumed as see figure 2. 

 

 

Figure 2: Special point body forces are acting at (0, )h  is positive and negative 

y-directions, respectively. 

 

1( , ) 0, ( , ) ( )[ ( ) ( )]
QX x y Y x y x y h y h      
  

 (6.1) 

where   is mass-density of the medium. 

The point force is acting at points (0, )h  and of intensity Q. Now, making use of (6.1) 

into (2.3) – (2.4) and then using (2.2), it is easy to evaluate the value of 
( ) ( ,0).b
yy x  

Therefore, it is easy to evaluate 0 ( )t  which is given as, 

3 3 2 4 4
0 1

3 4

sinh( / 2) ( , sinh( / 2) ( , )
( ) ,

( , ) ( , )

qhe R qhe b e qhe R qhe b
t aQ e b t a

R qhe t R qhe t

 
     

 

 (6.2) 

 ( , ) cosh cosR        

The value of 0 ( )t  will be used for crack shape through the evaluation of ( )g t . 
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31 3
0

3 3

( , )sinh( )
( ) ( )

2 ( , ) cosh( / 2)

R qhe be qheax x
R qhe x qhe

   
     

   

 

                              44
3

4 4

( , )sinh(
( ) ,0

( , ) cosh( / 2)

R qhe bqhee x x b
R qhe x qhe

  
     

  

 (6.4) 

The value of 0 ( )x  will be used in normal stress component. Thus bK  is given as 

1
1 1 1[ ( ) ] ( )bK b r b     

1 3 2 4
1

3 4

sinh( / 2) sinh( / 2)
( ) ( ) ( , ) ,

( , ) ( , )

a

b

e qhe e qheb a g y K y b dy
R qhe b R qhe b

 
    

  
  (6.5) 

2 2 2 1
1 12 66 11 3 11 3 4

2 2 2 1
2 11 4 12 66 11 3 4

2 2 1/ 2 2 2 1/ 2
3 1 1 2 4 1 1 2

( )[ ( )]

[ ][ ( )]

( ) , ( )

e a a a e a e e

e a e a a a e e

e r r r e r r r





   


     


      

 (6.6) 

 

SOLUTION OF FREDHOLM INTEGRAL EQUATION 

The solution of Fredholm integral equation, for special point force body force is 

obtained numerically by the method of fox and Goodwin [13] In the equation ( . ), the 

following substitution is made  

cos( / 2) cos( / 2)qt p qb  (6.7) 

1

0 10

1
where , 1, 10,

2

with 0, 1.

i ip p i

p p




    


  

 (6.8) 

The  limit of integration (b, a) is changed to (0, 1). 

Thus a system of ten linear equations as 

( ) ; , 1,2,3.....10,ij i jA p d i j   (6.9) 

with 

 
2

2
( ) ( ) ; , 1,2,3.....10, 1 ( , )ii i i i i i iA p p i j K p t

a
        (6.10) 

 
11

02 2

2 2
( ) ( , ), ( ) ( ),ij i j i j j jA p K p t d t t

a a


        (6.11) 

Where 0 ( )jt  is given by (6.2) – (6.3) and (6.6) the variation of stress-

intensity with respect to h, the distance of point of application of point body force. 
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7. DISCUSSION AND CONCLUSION 

Discussion 

The crack shapes for different ( / )h a  are shown in figures 3 and 4. The stress-intensity 

factors are plotted in figures 5 and 6.  

 

Figure 3a: Crack shape for different values of h/a with crack length = 0.3 

 

 

Figure 3b: Crack shape for different values of h/a for crack length = 0.2 
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Figure 3c: Crack shape for different values of h/a for crack length = 0.2 

 

 

Figure 4a : y
a u
d

 is plotted against x/a for different values of h/a when grains or a11 

are parallel to x-axis 

 

 

Figure 4b: ( ) ( ,0)e
y

a u x
d

 is plotted against x/a when grains or a11 are parallel to y-axis 

for different values of h/a. 



The Stress-Intensity Factors for Two Exterior Griffith-Cracks in an Orthotropic… 23 

 

 

Figure 5: Kb is plotted against h/a for different values of b/a when grains or a11 are 

parallel to x-axis. 

 

 

 

Figure 6: Kb is plotted against h/a for different values of b/a when grains or a11 are 

parallel to y-axis. 
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The elastic constants for wood of Oak and given as 

 2 2
11 11 13 33 22 22 23 33/ , /a s s s a s s s     

 12 12 13 23 33 66 66/ ,a s s s s a s    

where 

 11 22 33 66

12 13 23

1040, 175, 468, 1320

88.4, 303, 59.4

s s s s
s s s

   

     
 

The principle of cross-linear super position is being used in obtaining the solution of 

elasticity problem, see [19] 

 

CONCLUSION 

(i) From figures 3 it is observed that as point of application of point force goes 

away from the crack axis, crack opening becomes less. 

(ii) It is also observed that when crack length is less than crack opening is also 

small. 

(iii) From Figures 4 it is observed that when crack axis is along x-axis and elastic 

constant 11a  has greater value than that of 22a , then crack opening is more. 

(iv) If grains i.e. 11a  is along y-axis than crack opening is less. 

(v) From figures 5 and 6 it is observed that when crack length is less bK  is also 

less. 

(vi) It is also observed from figure 5 & 6 that when 11a  is along crack axis then bK  

is smaller then that of bk  when 11a  lies along perpendicular to crack axis. 

(vii) This method can be extended for multiple cracks ie. n-cracks in strip or 

rectangle. 
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