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Abstract 

 

Here we present a new parametric method of testing skewness using order statistics. 
By deriving the first four central moments of the test statistics, the distribution of it is 

fitted as a member in the Generalized Lambda Distribution (GLD) family. The 

method is based on computer programmes in Maple language. Tables representing the 

percentile points of the sampling distribution of the test statistics under different 
distributions and for different sample sizes are provided. The power of the test is also 

obtained. This method is too general as there is no specific distributional assumption. 

 

Key words: Order statistics, GLD family, Maple programmes, Parametric tests, 
Moments, Skewness and Kurtosis measures. 

 

 

1. Introduction 
A random variable X with probability density function (pdf) f(x) is said to be 

symmetric about a point ‘a’, if f(a + x) = f(a − x). A distribution that lacks symmetry 

is said to be skewed. Some of the commonly used measures of skewness are listed 

below. 
(1). Karl Pearson measure of skewness 

ξ=(mean – mode)/standard deviation 

ξ1=(mean – median)/standard deviation, when the mode is not easily available. 

If μr, r = 2 to 4 denote the central moments of order 2 to 4 of X, then the measure of 
skewness based on moments is β1 =μ3

2 / μ2
3 

If Q1, Q2 and Q3 denote the first three quartiles of the distribution of a random 

variable X, then the quantile measure of skewness is denoted as β and is defined as 

β = (Q3 − Q2) − (Q2 − Q1). 
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If mr, r = 2, 3 & 4 denote the sample central moments of order 2, 3 & 4, then the 
sample measure of skewness based on moments is b1 =m3

2 / m2
3 and the kurtosis is b2 

= m4 / m2
2. 

Several attempts have been made to fit a distribution to m3 or to the standardized 
moment ratio b1, based on sample observations from a normal population. Using the 

observations from a normal population, Pepper (1932) fitted a Pearson type VII 

distribution to the distribution of m3. While testing goodness of fit, Pepper found that 

the addition of one value of m3 at a sufficient distance from the origin would greatly 
increase the value of the standardized moment ratios β3 =μ6 / μ2

3 and β4 =μ8 / μ2
4. 

When sampling is from a normal population, Pearson (1965) suggested a Johnson’s 

symmetric Su curve for the distribution of b1 and D’Agostino and Pearson (1973) 

provided tables giving the values of probability integrals. A test based on a set of 
observations to see whether they could have arisen by random sampling from a 

normal population is termed as a test of normality, which may be carried out by a 

comparison of the sample distribution function with a normal distribution function. 

Certain other tests are said to be tests of normality when they are only tests of 
agreement of certain sample statistics with the values of the corresponding normal 

parameters. For example, a test of the value of the moment ratio b1 against the normal 

value of zero or a test of the value of b2 against the normal value 3. Based on a test-

statistic W, which is the ratio of the square of the best linear unbiased estimator of the 
normal population standard deviation to the sample variance, Shapiro and Wilk 

(1965) suggested a test of normality which approximately detect whether the 

deviation from normality is due to skewness or kurtosis. They supplied tables 

representing the percentile points of the null distribution of W for sample sizes 3 to 
50. The above procedures can be applied if the observed data is from a normal 

population and for large samples only. Even when the normality assumption holds 

good for observations, it is difficult to find the distribution of the test statistics and 

hence power of the test cannot be determined. 
In this article, we suggest a general parametric test for the quantile measure of 

skewness. Based on the first four moments of the test statistics, its sampling 

distribution is fitted as a member in the generalized lambda distribution (GLD) 

family. The critical region and power of the test are also evaluated. To find the first 
four moments of the test statistics, to fit its sampling distribution and to find power of 

the test, computer programmes in Maple language are provided. The method can be 

applied in the case of small samples also. Since there is no assumption regarding the 

form of the parent distribution except continuity of the random variables, it can be 
used for all type of distributions (symmetric, positively skewed and negatively 

skewed). The most significant aspect of the method is that, by inputting the given set 

of observations in the programme, one can examine whether the observations are 

drawn from a population with the specified skewness measure against any of the 
alternatives. Also, the power values under any of the alternatives can be evaluated. A 

brief review of the GLD family is discussed in section 2. In section 3, the first four 

moments of the test statistics are derived and the test is described. Illustration of the 

method on different type of distributions together with tables representing the 
percentile points of the distribution of the test statistics and power values for different 
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sample sizes are provided in section 4. Real life examples are also provided in this 
section. The programmes to find the first four moments of the test statistics, to fit its 

distribution, to find critical region and power of the test are given in appendix. 

 

 

2. Generalized Lambda Distributions (GLD) Family 

The generalized lambda distribution (GLD) family is a four parameter family of 

distributions derived by Ramberg and Schmeiser (1974). Unlike most other four 
parameter family of distributions, GLD has no explicit expression for its pdf, instead, 

members of the family are specified in terms of their quantile function. The quantile 

function of the four parameter GLD family is given by 

Q(p) = λ1 + [p λ3 – (1-p) λ4 ]/ λ2 

Here, λ1 and λ2 represent the location and scale parameters where as λ3 and λ4 

represent the shape parameters of the distribution. The support of the random variable 

with the above distribution is [λ1 – 1/ λ2, λ1+1/ λ2] when λ3>0 and λ4>0. The support is 

(−∞, λ1+1/ λ2) when λ3 < 0 and λ4 = 0 and it is (λ1 – 1/ λ2, ∞) when λ3 = 0 and λ4 < 0. 

 

2.1 Estimation of Parameters and Fitting of GLD 

The popular method of fitting GLD to a data set is the method of moments due to 

Ramberg et al. (1979). In this method the parameters λ3 and λ4 are first derived by 
solving the equations α3 = a3 and α4 = a4, where α3 and α4 are the coefficients of 

skewness and kurtosis of the distribution and a3 and a4 are their sample estimates. 

These systems of equations are too complex, so that to obtain the solutions computer 

programme in Maple language is provided. By solving the equations α1 = a1, α2 = a2 
and using the estimated values of λ3 and λ4, the values of λ1 and λ2 were determined. 

It may be noted that skewness and kurtosis are independent of location and scale 

parameters and moments of all orders exist if λ3 and λ4 are of same sign. Since 

corresponding to every admissible pair of skewness and kurtosis measures GLD 
family contains a member, a wide variety of densities with different tail shapes are 

available in the family. This family was used for Monte-Carlo simulation studies of 

robustness of statistical procedures and for sensitivity analysis. The family contains 

unimodal, U-shaped, J-shaped, symmetric and asymmetric distributions. One of the 
important advantages of this family is that all its members can be represented by a 

single quantile function and almost all known distributions can be represented as its 

member. 

 

 

3 Test for Skewness 

Let X be a unimodal continuous random variable with distribution function F(x), then 

the pth quantile of X is a real valued function denoted as Q(p) and is defined as  
Q(p) = inf(t : F(t) ≥ p), 0 < p < 1, (3.1) 

Then the first three quartiles Q1, Q2 and Q3 are obtained by putting p as ¼, ½ and ¾ 

respectively in equation (3.1). 

Let x1, x2,... xn denote a random sample of size n drawn from a population with the 
quantile measure of skewness as β and let x1;n, x2;n,... xn;n denote the order statistics. 
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Then for every p, 0 < p < 1, the pth quantile in the sample is denoted as q(p) and is 
defined as 

q(p) = xnp:n, if np is integer 

= x[np]+1:n, otherwise, where [np] is the integer part of np. (3.2) 
Let q1, q2 and q3 denote the first three sample quartiles, which are obtained by 

putting p 

as ¼, ½ and ¾ respectively in equation (3.2), then the sample estimate of β is 

b = (q3 − q2) − (q2 − q1) (3.3) 
To test H0 : β =β0 against any of the alternatives H1 : β >β0, H1 :β < β0 or H1 : βǂ  

β0, the test statistics used is b (β0 is a specified value of β). 

Detailed description regarding the theory and development of order statistics are 

available in David (1981) and David and Nagaraja (2003). Balakrishnan and Rao 
(1998) and Harter and Balakrishnan (1996) described the recent developments in the 

theory and properties of order statistics. Reiss (1989) described in details the relation 

between the quantiles and order statistics. 

 

3.1 First Four Moments of the Test-Statistics 

Let μr
’ (k :n), r = 1, 2,... denote the moments about origin of the kth order statistics 

xk:n, based on a random sample of size n drawn from the above population. Kumaran 

and Beena (2005) derived general expression for moments about origin of order 
statistics from GLD family, 

μr
’ (k : n) =(1/β(k, n − k + 1)) ∑r

i=0 (r
i) λ1

r-I λ2
-I ∑j

i
=0 (-1)

j (j
i) β(λ3 (i-j 

)+k, λ4 
j +n − k + 1) (3.4) 

Putting r = 1, 2, 3, 4 in equation (3.4) and simplifying we obtain the first four raw 
moments of kth order statistics as 

μ1
’ (k:n) = λ1 +[A1 / (A0λ2) ]  (3.5) 

μ2
’ (k:n) = λ1

2 +[(2 λ1A1)/ (A0λ2)]+[ A2 / (A0λ2
2
) ] (3.6)  

μ3
’ (k:n) = λ1

3 +[(3 λ1 
2A1)/ (A0λ2)]+ [3 A2 λ1 / (A0λ2

2
) ]+[ A3 / (A0λ2 

3
) ]  (3.7) 

μ4
’ (k:n) = λ1

4+[(4λ1
3A1)/(A0λ2)] + [6 A2 λ1

2/(A0λ2
2) ]+[ 4λ1A3 / (A0λ2

3)]  

+[A4 / (A0λ2 
4

) ]  (3.8) 

where A0 = β(k, n − k + 1)  (3.9) 

A1 = β(λ3 + k, n − k + 1) − β (k, λ4 + n − k + 1)  (3.10) 
A2 = β(2 λ3 + k, n − k + 1) − 2 β (λ3 + k, λ4 + n − k + 1) + β (k, 2 λ4  

+ n − k + 1)  (3.11) 

A3 = β(3 λ3 + k, n − k + 1) − 3 β(2 λ3 + k, λ4 + n − k + 1) + 3 β  

(λ3 + k, 2 λ4+ n − k + 1) 
− β (k, 3 λ4 + n − k + 1)  (3.12) 

A4 = β(4 λ3 + k, n − k + 1) − 4 β (3 λ3 + k, λ4 + n − k + 1)  

+ 6 β(2 λ3 + k, 2 λ4 + n − k + 1) 

− 4 β (λ3 + k, 3 λ4 + n − k + 1) + β(k, 4 λ4 + n − k + 1)  (3.13) 
Hence, the central moments up to order four of kth order statistics are obtained as 

μ2(k : n) = λ2 
−2 [ (A2/A0) – (A1

2 /A0
2)]  (3.14) 

μ3(k : n) = λ2 
−3 [ (A3/A0) – (3A1 A2

 /A0
2) +(3A1

3 /A0
3)]  (3.15) 

μ4(k : n) = λ2 
−4 [ (A4/A0) – (4A1 A3

 /A0
2) +(6A1

2 A2
 /A0

3)-(3A1
4 /A0

4)]  (3.16) 



Parametric Test for Skewness from Unknown Distributions 99 

 

Since the distribution function of sample observations is the estimator of the 
population distribution function, the sample quantile function can be regarded as an 

estimator of the population quantile function. Hence the mean, variance, skewness 

and kurtosis of the test statistics b are respectively denoted as α1, α2, α3, α4 and are 
obtained as 

α1=β   (3.17) 

α2 = μ2(q3) + 4μ2(q2) + μ2(q1)  (3.18) 

μ3(b) = μ3(q3) − 8μ3(q2) + μ3(q1)  (3.19) 
μ4(b) = μ4(q3) + 10μ4(q2) + μ4(q1) + 24μ2(q3)μ2(q2) + 6μ2(q3)μ2(q1)  

+ 24μ2(q2)μ2(q1) + 6[μ2(q2)]2  (3.20) 

α3 = μ3(b)/(μ2(b))3/2 

α4 = μ4(b)/(μ2(b))2 
The values of μ2(q1), μ3(q1) and μ4(q1) are respectively obtained by putting k as n/4 or 

[n/4] +1 according as n/4 is an integer or not in equations (3.14) to (3.16), where [n/4 

] represents the integer part of n/4. Similarly, the moments of q2 and q3 are obtained 

by putting the value of k as n/2 or [n/2] +1 and 3n/4 or [3n/4] +1 as the case may be in 
equations (3.14) to (3.16). 

 

3.2 The Test for Skewness 

To test (H0 :β = β0) against any of the alternatives, the test procedure is described 
below in the form of an algorithm. 

Step-1. Computation of test statistics: Draw a sample of size n from the given 

population with GLD parameters (λ1, λ2, λ3, λ4). Arranging the sample observations in 

their order of magnitude, compute the three sample quartiles qk, k = 1, 2, 3, which are 
the (nk/4)th observations in the ordered sample when nk/4 is an integer and are ([nk/4] 

+ 1)th observations when nk/4 is not an integer. Then compute the test statistics b = (q3 

− q2) − (q2 − q1). 

Step-2. Computation of first four moments of the test statistics: The mean, variance, 
skewness and kurtosis of the test statistics are obtained using equations (3.14) to 

(3.20). To obtain these values, programme P1 in the appendix can be used and denote 

them respectively as α1, α2, α3, α4. 

Step-3. Fitting GLD to the distribution of the test statistics: Using these values of α1, 
α2, α3, α4 as the arguments in the programme P2 in the appendix, fit the distribution of 

the test statistics under H0 as a member in the GLD family. Let (λ1
’, λ2

’, λ3
’, λ4

’) 

denote the GLD parameters of the fitted distribution and hence the quantile function 

of the fitted distribution of b under H0 is given as 
Q(p) = λ1

’ + [p λ3
’ – (1-p) λ4

’ ]/ λ2
’,0≤ p ≤1 (3.21) 

Step-4. Computation of critical region: For a given level of significance α, the critical 

regions are b ≤ S1, for H1 : β < β0, b ≥ S2, for H1 : β > β0 and b ≤ S3 or b ≥ S4, for 

H1 : β ≠ β0, where S1, S2, S3 and S4 are obtained from equation (3.21) by putting p 
as α, 1−α, α/2 and 1− α/2 respectively. 

Step-5. Computation of power: To obtain the power of the test, for different values of 

β, re-estimate the GLD parameters of the distribution of b and from the fitted 

distribution the required probabilities can be evaluated using the programme P3. 
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Remark:-In case when the GLD parameters of the parent distribution are unknown, 
they can be estimated using the sample observations and programme P2. 

 

 

4 Numerical Illustration 

The method proposed above for testing the significance of skewness is illustrated in 

the case of log-normal (0, 1/3) distribution, which is a positively skewed distribution 

with the GLD parameters λ1 = 0.8451, λ2 = 0.1085, λ3 = 0.01017 and λ4 = 0.03422. To 
test H0 : β = 0.03875, the values of (α1, α2, α3, α4) and the corresponding GLD 

parameters of the distribution of the test statistics for different values of n are 

presented in table 1. For different values of n, the percentile points of the distribution 

of b and the power values at α = 0.05 are presented in tables 2 and 3. Based on these 
percentile points, conclusions can be made against any of the alternatives, H1 : β > 

0.03875, H1 : β <0.03875 or H1 : β ≠ 0.03875 

 

Table 1: The values of (α1, α2, α3, α4) and the GLD parameters of the 

distribution of b from LN(0, 1/3) 

 
n α1              α2                α3               α4 λ1              λ2                   λ3                λ4 

5 

10 
15 
20 

25 
30 

0.0387     0.2062     -0.2191    3.4058 

0.0387     0.1031     -0.0784    3.2194 
0.0387     0.0740     -0.0711    3.1822 
0.0387     0.0514     -0.0781    3.0738 

0.0387     0.0430     -0.0719    3.1624 
0.0387     0.0356     -0.0525    3.0519 

-0.0381    0.2728     0.0656     0.0899 

0.0162     0.4767     0.0927     0.1057 
0.0208     0.5890     0.0982     0.1111 
0.0202     0.8033     0.1128     0.1316 

0.0246     0.7911     0.1008     0.1146 
0.0281     0.9881     0.1190     0.1324 

 

Table 2: Percentile points of the distribution of b from LN(0, 1/3) 

 
 

n 

% Probability Level 

90                95             97.5            99            10              5              2.5             1 

5 

10 

15 

20 

25 

30 

0.6221       0.8150       0.9904      1.2021      -0.5171      -0.6748      -0.8171     -0.9899 

0.4490       0.5756       0.6886      0.8227      -0.3638      -0.4812      -0.5858     -0.7105 

0.3866       0.4930       0.5875      0.6992      -0.3031      -0.4025      -0.4904     -0.5950 

0.3308       0.4184       0.4952      0.5844      -0.2473      -0.3283      -0.3993     -0.4824 

0.3044       0.3854       0.4572      0.5417      -0.2222      -0.2976      -0.3644     -0.4435 

0.3044       0.3854       0.4572      0.5417      -0.2222      -0.2976      -0.3644     -0.4435 
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Table 3: Power values of the distribution of the test from LN(0, 1/3) 
 

N β: for lower tailed test  

-0.2       -0.4      -0.6       -0.8        -1  

β: for upper tailed test 

 0.2         0 .4           0.6          0.8           1 

5 

10 

15 

20 

25 

30 

0.088   0.170    0.298    0.468   0.652  

0.118   0.282    0.524    0.760   0.910 

0.136   0.356    0.652    0.874   0.970 

0.164   0.460   0.790    0.956   0.9952 

0.180   0.522   0.854    0.976   0.998 

0.204   0.606   0.906    0.991    1 

0.138    0.272    0.448    0.630    0.778 

0.186    0.404    0.654    0.846    0.946 

0.226    0.504    0.774    0.928    0.984 

0.288    0.632    0.886    0.980    0.998 

0.320    0.698    0.928    0.990    0.999  

0.360    0.762    0.960    0.998    1 

 

 

4.1 Application of the Method 

The test developed in this section is illustrated on real life data given below. 

Example-1: The following data represents the scores on intelligence quotient (I.Q) 
examinations of 40 sixth grade students at a particular school. 

114, 122, 103, 118, 99, 105, 134, 125, 117, 106, 109, 104, 111, 127, 113, 121, 133, 

111, 117, 103, 120, 98, 100, 130, 141, 119, 128, 106, 109, 115, 100, 130, 125, 117, 

119, 113, 104, 108, 110, 102. 
Examine whether the I.Q distribution is symmetric or not(Ross (2005)). 

Solution: The hypothesis to be tested in this case is H0 : β = 0 against H1 : βǂ  0. To 

conduct the test, given sample is ordered as 

98, 99, 100, 100, 102, 103, 103, 104, 104, 105, 106, 106, 108, 109, 109, 110, 111,  
111, 113, 113, 114, 115, 117, 117, 117, 118, 119, 119, 120, 121, 122, 125, 125, 127, 

128, 130, 130, 133, 134, 141. 

Here, the first three quartiles are respectively obtained as q1 = 105, q2 = 113 and q3 = 

121. Hence, the observed value of b is obtained as 0. The values of α1, α2, α3, α4 and the 
corresponding GLD parameters of the distribution of b under H0 are obtained as α1 = 

0, α2 = 0.1681, α3 =−0.0016, α4 = 2.6251 and λ1
’ = −0.0042, λ2

’ = 0.7028, λ3
’ = 

0.2218, λ4
’ = 0.2236. Since the test is two tailed, at α = 0.05, the lower and upper 

percentile values corresponding to 0.025 are respectively obtained as S3 = −0.7889 
and S4 = 0.7897 and the critical region of the test is b < S3 or b > S4. Since the 

observed value of b falls in the acceptance region, the null hypothesis of symmetry is 

accepted. Thus the given data support the assertion that the I. Q. distribution is 

symmetric. 
Example-2: Dudewicz, et al. (Karian and Dudewicz(2000)) gave data on the brain 

tissue MRI scan parameter, AD. It should be noted that the term ’parameter’ is used 

differently in brain scan studies. Report on the following 23 observations associated 
with scan of the left thalamus were obtained. 

108.7, 107, 110.3, 110, 113.6, 99.2, 109.8, 104.5, 108.1, 107.2, 112, 115.5, 108.4, 

107.4, 113.4, 101.2, 98.4, 100.9, 100, 107.1, 108.7, 102.5, 103.3. 

Examine whether the distribution of AD is negatively skewed or not. 
Solution: The hypothesis to be tested in this case is H0 : β= 0 against H1 : β < 0. To 

conduct the test, since the form of the distribution is not known, the GLD parameters 

of the parent distribution are estimated using the sample moments. The estimates of 
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the first four moments are 106.8, 22.3, −0.1615, 2.106 and the corresponding GLD 
parameters are estimated as λ1 = 101.52, λ2 = 0.0635, λ3 = 0.0535 and λ4 = 0.6316. 

Using these values, the values of α1, α2, α3, α4 and the corresponding GLD parameters 

of the test statistics b under H0 are obtained as α1 = 0, α2 = 12.61, α3 = −0.066, α4 = 
2.61 and λ1

’ = −0.6367, λ2
’ = 0.0812, λ3

’ = 0.186, λ4
’= 0.264. Since the test is lower 

tailed, at α = 0.05, the lower percentile point of the distribution of b is S1 = −5.93. 

The ordered sample is obtained as 

98.4, 99.2, 100, 100.9, 101.2, 102.5, 103.3, 104.5, 107, 107.1, 107.2, 107.4, 108.1, 
108.4, 108.7, 108.7, 109.8, 110, 110.3, 112, 113.4, 113.6, 115.5. 

The first three quartiles are obtained as q1 = 102.5, q2 = 107.4 and q3 = 110 and 

hence the value of the test statistics is obtained as b = −2.3. The critical region of the 

test is b > −5.73. Since the observed value of b falls in the rejection region, the null 
hypothesis is rejected. Thus the given data do not support the assertion that the AD 

distribution is negatively skewed. Here, for β = 1, the power of the test is obtained as 

0.102. 

 

 

Conclusion 

We have demonstrated a general parametric method of test of skewness, based on 

samples from any continuous unimodal populations. Since, there doesn’t exist any 
exact method for testing the skewness or the third central moment of a population, 

this method is more useful in practical cases. Again, since it is possible to fit the 

distribution of the test statistics under both the null and alternative hypotheses, power 

of the test can also be evaluated under this method. As this method doesn’t make any 
rigorous assumption on the distribution of the population, is applicable to almost all 

continuous distributions. This method is can be conducted based on computer 

programmes in maple language. 

 

 

Appendix 

Programme-P1 

# Procedure to estimate the values of (α1, α2, α3, α4) of b via observations 
# Function: Findalphas of the sample median via observations 

# Purpose:– Compute a-values of the sample quantile measure of skewness 

# Arguments: a, b, c, d–The GLD parameters of the parent distribution; 

# p, p1, p2–The proportions to find quartiles; 
# n–number of observations 

# H–The specified value of the quantile measure of skewness under the null 

hypothesis; 

Findalphas:= Proc(n::Numeric, p::Numeric, p1::Numeric, p2::Numeric a::Numeric, 
b::Numeric, c::Numeric,d::Numeric, H:Numeric) 

Local f, f1, f2, k, s, u, B1, B2, B3, B4, B5, B6, B7, B8, B9, B10, B11, B12, B13, B14, B15, C1, 

C2, C3, C4, C5, C6, C7, C8, C9, C10, C11, C12, C13, C14, C15, D1, D2, D3, D4, D5, D6, D7, 

D8, D9, D10, D11, D12, D13, D14, D15, M1,1, M2,1, M3,1,M4,1, M2,2, M2,3, M3,2, 
M3,3, M4,2, M4,3, a1, a2, a3, a4, Ah; 
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f := convert((n+1)p, fraction); k := trunc(f); f1 := convert((n+1)p1, fraction); s := 
trunc(f); f2 := convert((n+1)p2, fraction); u := trunc(f); 

B1 := evalf(Beta(k, n − k + 1)); C1 := evalf(Beta(s, n −s + 1)); D1 := evalf(Beta(s, n − s 

+ 1)); 
B2 := evalf(Beta(c+k, n− k+1)); C2 := evalf(Beta(c+ s, n−s + 1)); D2 := evalf(Beta(c 

+u, n −u + 1)); 

B3 := evalf(Beta(k, d+ n− k +1)); C3 := evalf(Beta(s, d + n−s +1)); D3 := evalf(Beta(u, 

d + n−u + 1)); 
B4:=evalf(Beta(2*c + k, n− k+1)); C4:=evalf(Beta(2*c+s, n−s+1)); 

D4:=evalf(Beta(2*c+u, n−u + 1)); 

B5:=evalf(Beta(c+k, d+n−k+1)); C5:=evalf(Beta(c+s, d+n−s+1)); D5:=evalf(Beta(c+u, 

d+n−u+1)); 
B6:=evalf(Beta(k,(2*d+n−k+1)));C6:=evalf(Beta(s, (2*d+n−s+1))); D6:=evalf(Beta(u, 

(2*d+n−u+1))); 

B7:=evalf(Beta(3*c+k, n− k+1)); C7:=evalf(Beta(3*c+s, n−s+1)); 

D7:=evalf(Beta(3*c+u, n− u+1)); B8:=evalf(Beta(2*c+k, d+ n− k+1)); 
C8:=evalf(Beta(2*c+s, d+ n− s+1)); D8:=evalf(Beta(2*c+u, d+ n−u+ 1)); 

B9:=evalf(Beta(c+ k, 2d+ n−k+1)); C9:=evalf(Beta(c+ s, 2d+ n−s+1)); 

D9:=evalf(Beta(c+ u, 2d+ n−u+1)); 

B10:=evalf(Beta(k, 3*d+ n−k+1)); C10:=evalf(Beta(s, 3*d+ n−s+1)); 
D10:=evalf(Beta(u, 3*d+ n−u+1)); 

B11:=evalf(Beta(4*c+ k, n− k+1)); C11:=evalf(Beta(4*c+ s, n−s+1)); 

D11:=evalf(Beta(4*c+ u, n− u+1)); 

B12:=evalf(Beta(3*c+ k, d+ n− k+1)); C12:=evalf(Beta(3*c+ s, d+ n− s+1)); 
D12:=evalf(Beta(3*c+u, d+ n−u+1)); 

B13:=evalf(Beta(2*c+k, 2d+n−k+1)); C13:=evalf(Beta(2*c+s, 2d+n−s+1)); 

D13:=evalf(Beta(2*c+u, 2d+n−u+1)); 

B14 := evalf(Beta(c+k, 3*d+n−k+1)); C14 := evalf(Beta(c+s, 3*d+n−s+1)); D14 := 
evalf(Beta(c+u, 3*d+n−u+1)); 

B15 := evalf(Beta(k, 4*d + n − k + 1)); C15 := evalf(Beta(s, 4*d + n −s + 1)); D15 := 

evalf(Beta(u, 4*d + n − u + 1)); 

M1,1 := evalf(a + (B2−B3)//bB1); M2,1 := evalf(b−2 [(B4−2B5+B6)/B1− (B2−B3)2/B1
2 ]); 

M3,1 := evalf(b−3 [(B7−3B8 +3B9-B10)/B1− 3(B2-B3)(B4−2B5+B6)/B1
2 +2 (B2−B3)3/B1

3 

]); 

M4,1 := evalf(b4 [(B11−4B12 +6B13-4B14 +B15)/B1− 4(B2-B3)(B7−3B8+3B9 –B10)/B1
2 + 

6(B2-B3)2 (B4−2B5+B6)/B1
3-3(B2−B3)4/B1

4 ]); 
M2,2 := evalf(b−2 [(C4−2C5+C6)/C1 − (C2−C3)2 /C1

2 ]); 

M3,2 := evalf(b−3 [(C7−3C8 +3C9-C10)/C1− 3(C2-C3)(C4−2C5+C6)/C1
2 +2 (C2−C3)3/C1

3 

]); 

M4,2 := evalf(b4 [(C11−4C12 +6C13-4C14 +C15)/C1− 4(C2-C3)(C7−3C8+3C9 –C10)/C1
2 + 

6(C2-C3)2 (C4−2C5+C6)/C1
3-3(C2−C3)4/C1

4 ]); 

M2,3 := evalf(b−2 [(D4−2D5+D6)/D1 − (D2−D3)2 /D1
2 ]); 

M3,3 := evalf(b−3 [(D7−3D8 +3D9-D10)/D1− 3(D2-D3)(D4−2D5+D6)/D1
2 +2 

(D2−D3)3/D1
3 ]); 
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M4,3 := evalf(b4 [(D11−4D12 +6D13-4D14 +D15)/D1− 4(D2-D3)(D7−3D8+3D9 –D10)/D1
2 

+ 

6(D2-D3)2 (D4−2D5+D6)/D1
3-3(D2−D3)4/D1

4 ]); 

α1 :=H; α2 :=M2,1+4M2,2+M2,3 ; α3 := evalf((M3,3−8M3,2+M3,1)/ α2
1.5); 

α1 := evalf(M4,1+M4,3+10M4,2+24M2,3M2,2+24M2,2M2,1+6M2,3M2,1+6M2,2
2 / α2

2); 

Ah := [α1, α2, α3, α4]; end: 

 

Programme-P2 
# Procedure to determine lambdas and the percentile points from sample Ah-values 

#Function: Findlambdas 

#Purpose: Estimation of GLD parameters by Newton’s approx. 

#Arguments: Ah–list of a1, a2, a3, a4; 
# I3, I4–Initial approx. of λ3 and λ4 

Findlambdas := Proc(Ah::list, I3::Numeric, I4::Numeric) 

Local A, B, C, D1, D2, D, α1, α2, α3, α4, F, a1, a2, a3, a4, V, J, err3, err4, Fk, Jk, Y, 

Eq3, Eq4, A1, A2, L, FirstL, SecondL, l, R1, R2, R3, R4, R5, R6, R7, R8; 
with(linalg, vector, matrix, jacobian, linsolve): 

a1 := 0; a2 := 1; a3 := evalf(Ah[3]); a4 := evalf(Ah[4]); L3 := I3; L4 := I4; 

A := [1/(1+ λ3)]-[1/(1+ λ4)]; 

B := [1/(1+ 2*λ3)] + [1/(1+ 2*λ4)]− 2* Beta(1 + λ3, 1 + λ4); 
C := [1/(1+ 3*λ3)]-[1/(1+ 3*λ4)] + 3* Beta(1 + 2*λ3, 1 + λ4)+ 3* Beta(1 + λ3, 1 + 2* 

λ4); 

D1 := [1/(1+ 4*λ3)] + [1/(1+ 4*λ4)] + 6* Beta(1 + 2*λ3, 1 +2* λ4); 

D2 := −4 * Beta(1 + 3 * λ3, 1 + λ4) − 4 * Beta(1 + λ3, 1 + 3* λ4); D := D1 + D2;  
α1 := λ1 + A/ λ2; α2 := abs(B − A2)/ λ22; 

α3 := (C−3*A*B+2*A3)/abs((B−A2)3/2) ; 

α4 := (d−4*A*C+6*B*A2−3*A4)/(B−A2)2 ; 

Eq3 := α3 − a3; Eq4 := α4 − a4; 
F := vector([Eq3,Eq4]); V := vector([λ3, λ4]); 

j := evalf(jacobian(F, V)); err3 := 1; err4 := 1; 

while (err3 >.0001 or err4 >.0001) do 

Fk := vector([evalf(subs(λ3 = L3, λ4 = L4,−Eq3)), evalf(subs(λ3 = L3, λ4 = 
L4,−Eq4))]); 

Jk := matrix([[subs(λ3 = L3, λ4 = L4, j[1, 1]), subs(λ3 = L3, λ4 = L4, j[1, 2])], 

[subs(λ3 = L3, λ4 = L4, j[2, 1]), subs(λ3 = L3, λ4 = L4, j[2, 2])]]);  

Y := linsolve(Jk, Fk);L3 := L3 + Y [1]; 
L3 := L3 + Y [1]; L4 := L4 + Y [2]; 

err3 := evalf(abs(subs(λ3 = L3, λ4 = L4,Eq3))); 

err4 := evalf(abs(subs(λ3 = L3, λ4 = L4,Eq4))); 

od; 
print(L3, L4, err3, err4); 

A1 := evalf(subs(λ 3 = L3, λ4 = L4,A)); 

A2 := evalf(subs(λ3 = L3, λ4 = L4,B)); 

L2 := abs(sqrt(((A2 – A12))/a2)); 
L1 := a1 − A1/L2; 
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FirstL := [L1, L2, L3, L4]; 
if L3 < 0 then SecondL := [−FirstL[1], FirstL[2], FirstL[4], FirstL[3]] else SecondL := 

FirstL fi; 

if evalf(Ah[3]) < 0 then L := [−SecondL[1], SecondL[2], SecondL[4], SecondL[3]] 
else 

L := SecondL fi ; 

l := [L[1] * sqrt(Ah[2]) + Ah[1], (L[2])/(sqrt(Ah[2])), L[3], L[4]];  

t0.05 := l[1] + ((0.05)l[3]−(0.95)l[4])/l[2] ; t0.95 := l[1] + ((0.95)l[3]−(0.05)l[4])/l[2] ; 
t0.025 := l[1] + ((0.025)l[3]−(0.975)l[4])/l[2] ; t0.975 := l[1] + 

((0.975)l[3]−(0.025)l[4])/l[2] ; 

t0.01 := l[1] + ((0.01)l[3]−(0.99)l[4])/l[2] ; t0.99 := l[1] + ((0.99)l[3]−(0.01)l[4])/l[2] ; 

t0.005 := l[1] + ((0.005)l[3]−(0.995)l[4])/l[2] ; t0.995 := l[1] 
+((0.995)l[3]−(0.005)l[4])/l[2] ; 

end: 

 

Programme-P3 
# Procedure to determine the power values of the test; 

#Function: Power via iteration; 

#Purpose: Compute power values of the test; 

#Arguments: L–list of lambda values of the test; 
#S0, S1– skewness values under H0, H1; 

#P0–initial approx. of power; 

#K–critical point of the test; 

FindPower:= Proc(L:: list,Q0::Numeric, Q1::Numeric, P0::Numeric, K::Numeric) 
Local l1,Q,E,err,P,p; 

l1 := evalf(L[1] + S1 − S0); Q := l1 + (pL[3] − (1 − p)L[4])/L[2]; 

P := P0; E := K − Q; err := 0.5; while (err >.00001) do P := P +.0002; 

err:=evalf(subs(p = P,E)); od; 
if the test is lower tailed then print(P,err) else print(1-P,err) fi; end: 
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